Skip to main content

Fundamental Physics with Black Holes

  • Chapter
  • First Online:
Quantum Aspects of Black Holes

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 178))

Abstract

In this chapter we discuss how quantum gravitational and quantum mechanical effects can affect black holes. In particular, we discuss how Planckian quantum black holes enable us to probe quantum gravitational physics either directly if the Planck scale is low enough or indirectly if we integrate out quantum black holes from our low energy effective action. We discuss how quantum black holes can resolve the information paradox of black holes and explain that quantum black holes lead to one of the few hard facts we have so far about quantum gravity, namely the existence of a minimal length in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this section, we set \(\hbar =1\), \(c=1\) and \(G_N=1\).

  2. 2.

    Note that in [83], it was argued that one could identify the \(\sigma \)-meson as the pole of a resummed scattering amplitude in the large \(N\) limit of chiral perturbation theory. This resummed amplitude is an example of self-healing in chiral perturbation theory. In low energy QCD, the position of the pole does correspond to the correct value of the mass and width of the \(\sigma \)-meson.

References

  1. Wald, R.M.: General Relativity, p. 491. University Press, Chicago (1984)

    Google Scholar 

  2. Schwarzschild, K.: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916, 189–196 (1916)

    Google Scholar 

  3. Kerr, R.P.: Phys. Rev. Lett. 11, 237–238 (1963)

    Google Scholar 

  4. Michell, J.: On the means of discovering the distance, magnitude, & c. of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured from observations, as would be farther necessary for that purpose. By the Rev. John Michell, B. D. F. R. S. In a Letter to Henry Cavendish, Esq. F. R. S. and A. S., philosophical transactions of the royal society of London (the royal society) 74, 3557, 1784. ISSN 0080–4614

    Google Scholar 

  5. de Laplace, P.-S.: Exposition du système du Monde (English tran: Rev. H. Harte, Dublin 1830). Part 11, Paris (1796)

    Google Scholar 

  6. Klinkhamer, F.R.: Mod. Phys. Lett. A 28, 1350136 (2013). arXiv:1304.2305 [gr-qc]

  7. Kanti, P., Winstanley, E.: Hawking radiation from higher-dimensional black holes. In: Quantum Aspects of Black Holes, Chap. 8. Springer (2015)

    Google Scholar 

  8. Grumiller, D., McNees, R., Salzer, J.: Black holes and thermodynamics the first half century. In: Quantum Aspects of Black Holes, Chap. 2. Springer (2015)

    Google Scholar 

  9. Hsu, S.: Monsters, black holes and entropy. In: Quantum Aspects of Black Holes, Chap. 4. Springer (2015)

    Google Scholar 

  10. Mann, R.: Black holes: thermodynamics, information, and firewalls. In: Quantum Aspects of Black Holes, Chap. 3. Springer (2015)

    Google Scholar 

  11. Green, A.: Primordial black holes: sirens of the early universe. In: Quantum Aspects of Black Holes, Chap. 5. Springer (2015)

    Google Scholar 

  12. Barrow, J.D., Copeland, E.J., Liddle, A.R.: Phys. Rev. D 46, 645 (1992)

    Article  ADS  Google Scholar 

  13. Chavanis, P.-H.: Self-gravitating Bose-Einstein condensates. In: Quantum Aspects of Black Holes, Chap. 6. Springer (2015)

    Google Scholar 

  14. Dvali, G., Gomez, C.: Eur. Phys. J. C 74, 2752 (2014). http://www.arxiv.org/abs/1207.4059 [hep-th]

  15. Meade, P., Randall, L.: JHEP 0805, 003 (2008). http://www.arxiv.org/abs/0708.3017 [hep-ph]

  16. Calmet, X., Gong, W., Hsu, S.D.H.: Phys. Lett. B 668, 20 (2008). http://www.arxiv.org/abs/0806.4605 [hep-ph]

  17. Penrose, R.: Unpublished in the 1970s, Private communication

    Google Scholar 

  18. Eardley, D.M., Giddings, S.B.: Phys. Rev. D 66, 044011 (2002). http://www.arxiv.org/abs/gr-qc/0201034

  19. Hsu, S.D.H.: Phys. Lett. B 555, 92 (2003). http://www.arxiv.org/abs/hep-ph/0203154

  20. D’Eath, P., Farley, A.N.S.J.: Quantum amplitudes in blackhole evaporation with local supersymmetry. In: Quantum Aspects of Black Holes, Chap. 7. Springer (2015)

    Google Scholar 

  21. Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phys. Lett. B 436, 257 (1998). http://www.arxiv.org/abs/hep-ph/9804398

  22. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phys. Lett. B 429, 263 (1998). http://www.arxiv.org/abs/hep-ph/9803315

  23. Gogberashvili, M.: Int. J. Mod. Phys. D 11, 1635 (2002). http://www.arxiv.org/abs/hep-ph/9812296

  24. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370 (1999). http://www.arxiv.org/abs/hep-ph/9905221

  25. Calmet, X., Hsu, S.D.H., Reeb, D.: Phys. Rev. D 77, 125015 (2008). http://www.arxiv.org/abs/0803.1836 [hep-th]

  26. Huber, S.J.: Nucl. Phys. B 666, 269 (2003). http://www.arxiv.org/abs/hep-ph/0303183

  27. Calmet, X.: Mod. Phys. Lett. A 25, 1553 (2010). http://www.arxiv.org/abs/1005.1805 [hep-ph]

  28. Kabat, D.N.: Nucl. Phys. B 453, 281 (1995). http://www.arxiv.org/abs/hep-th/9503016

  29. Larsen, F., Wilczek, F.: Nucl. Phys. B 458, 249 (1996). http://www.arxiv.org/abs/hep-th/9506066http://www.arxiv.org/abs/hep-th/9506066

  30. Vassilevich, D.V.: Phys. Rev. D 52, 999 (1995). http://www.arxiv.org/abs/gr-qc/9411036http://www.arxiv.org/abs/gr-qc/9411036

  31. Thorne, K.S.: Nonspherical gravitational collapse: a short review. In: Klauder J.R. (ed.) Magic Without Magic, pp. 231–258. San Francisco (1972)

    Google Scholar 

  32. Anchordoqui, L.A., Feng, J.L., Goldberg, H., Shapere, A.D.: Phys. Rev. D 65, 124027 (2002). http://www.arxiv.org/abs/hep-ph/0112247http://www.arxiv.org/abs/hep-ph/0112247

  33. Anchordoqui, L.A., Feng, J.L., Goldberg, H., Shapere, A.D.: Phys. Rev. D 68, 104025 (2003). http://www.arxiv.org/abs/hep-ph/0307228

  34. Anchordoqui, L.A., Feng, J.L., Goldberg, H., Shapere, A.D.: Phys. Lett. B 594, 363 (2004). http://www.arxiv.org/abs/hep-ph/0311365

  35. Dimopoulos, S., Landsberg, G.L.: Phys. Rev. Lett. 87, 161602 (2001). http://www.arxiv.org/abs/hep-ph/0106295

  36. Feng, J.L., Shapere, A.D.: Phys. Rev. Lett. 88, 021303 (2002). http://www.arxiv.org/abs/hep-ph/0109106

  37. Giddings, S.B., Thomas, S.D.: Phys. Rev. D 65, 056010 (2002). http://www.arxiv.org/abs/hep-ph/0106219

  38. Hossenfelder, S., Hofmann, S., Bleicher, M., Stoecker, H.: Phys. Rev. D 66, 101502 (2002). [hep-ph/0109085]

    Article  ADS  Google Scholar 

  39. Yoshino, H., Rychkov, V.S.: Phys. Rev. D 71, 104028 (2005) [Erratum-ibid. D 77, 089905 (2008)] http://www.arxiv.org/abs/hep-th/0503171

  40. Yoshino, H., Nambu, Y.: Phys. Rev. D 67, 024009 (2003). http://www.arxiv.org/abs/gr-qc/0209003

  41. Alberghi, G.L., Bellagamba, L., Calmet, X., Casadio, R., Micu, O.: Eur. Phys. J. C 73, 2448 (2013). [ http://www.arxiv.org/abs/1303.3150]

  42. Arsene, N., Calmet, X., Caramete, L.I., Micu, O.: Astropart. Phys. 54, 132 (2014) http://www.arxiv.org/abs/1303.4603 [hep-ph]

  43. Calmet, X., Fragkakis, D., Gausmann, N.: Non thermal small black holes. In: Bauer, A.J., Eiffel, D.G. (eds.) Black Holes: Evolution, Theory and Thermodynamics, Chap. 8. Nova Publishers, New York (2012). http://www.arxiv.org/abs/1201.4463 [hep-ph]

  44. Calmet, X., Landsberg, G.: Lower dimensional quantum black holes. In: Bauer, A.J., Eiffel, D.G. (eds.) Black Holes: Evolution, Theory and Thermodynamics, Chap. 7. Nova Publishers, New York (2012). http://www.arXiv.org/abs/1008.3390 [hep-ph]

  45. Calmet, X., Feliciangeli, M.: Phys. Rev. D 78, 067702 (2008). http://www.arxiv.org/abs/0806.4304 [hep-ph]

  46. Calmet, X., Fragkakis, D., Gausmann, N.: Eur. Phys. J. C 71, 1781 (2011). arXiv:1105.1779 [hep-ph]

  47. Calmet, X., Caramete, L.I., Micu, O.: JHEP 1211, 104 (2012). arXiv:1204.2520 [hep-ph]

  48. Calmet, X., Gausmann, N.: Non-thermal quantum black holes with quantized masses. Int. J. Mod. Phys. A 28, 1350045 (2013). arXiv:1209.4618 [hep-ph]

  49. Aad, G., et al.: ATLAS collaboration. arXiv:1311.2006 [hep-ex]

  50. Landsberg, G.. In: Quantum Aspects of Black Holes, Chap. 9. Springer (2015)

    Google Scholar 

  51. Savina, M.V.: CMS collaboration. Phys. Atom. Nucl. 76, 1090 (2013) [Yad. Fiz. 76, no. 9, 11501159 (2013)]

    Google Scholar 

  52. Hoyle, C.D., Kapner, D.J., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Schmidt, U., Swanson, H.E.: Phys. Rev. D 70, 042004 (2004). [hep-ph/0405262]

    Article  ADS  Google Scholar 

  53. Calmet, X.: Int. J. Mod. Phys. D 22, 1342014 (2013) arXiv:1308.6155 [gr-qc]

  54. Atkins, M., Calmet, X.: Phys. Rev. Lett. 110(5), 051301 (2013). arXiv:1211.0281 [hep-ph]

  55. Onofrio, R.: Eur. Phys. J. C 72, 2006 (2012). arXiv:1303.5695 [gr-qc]

  56. Bezrukov, F.L., Shaposhnikov, M.: Phys. Lett. B 659, 703 (2008). arXiv:0710.3755 [hep-th]

  57. Starobinsky, A.A.: Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  58. Calmet, X., Hsu, S.D.H., Reeb, D.: Phys. Rev. Lett. 101, 171802 (2008). arXiv:0805.0145 [hep-ph]

  59. Calmet, X., Hsu, S.D.H., Reeb, D.: Phys. Rev. D 81, 035007 (2010). http://www.arxiv.org/abs/0911.0415 [hep-ph]

  60. Hall, L.J., Sarid, U.: Phys. Rev. Lett. 70, 2673 (1993). http://www.arxiv.org/abs/hep-ph/9210240

  61. Hill, C.T.: Phys. Lett. B 135, 47 (1984)

    Article  ADS  Google Scholar 

  62. Shafi, Q., Wetterich, C.: Phys. Rev. Lett. 52, 875 (1984)

    Article  ADS  Google Scholar 

  63. Amaldi, U., de Boer, W., Furstenau, H.: Phys. Lett. B 260, 447 (1991)

    Article  ADS  Google Scholar 

  64. Calmet, X., Yang, T.-C.: Phys. Rev. D 84, 037701 (2011). arXiv:1105.0424 [hep-ph]

  65. Ellis, J.R., Gaillard, M.K.: Phys. Lett. B 88, 315 (1979)

    Article  ADS  Google Scholar 

  66. Panagiotakopoulos, C., Shafi, Q.: Phys. Rev. Lett. 52, 2336 (1984)

    Article  ADS  Google Scholar 

  67. Enqvist, K., Maalampi, J.: Phys. Lett. B 180, 14 (1986)

    Article  ADS  Google Scholar 

  68. Calmet, X., Sanz, V.: Phys. Lett. B 737, 12 (2014) arXiv:1403.5100 [hep-ph]

  69. Strominger, A.: Les Houches lectures on black holes. arXiv:9501071 [hep-th]

    Google Scholar 

  70. Giddings, S.B.: Phys. Rev. D 46, 1347 (1992). ([hep-th/9203059]; Phys. Rev. D 49, 947 (1994)[hep-th/9304027])

    Article  ADS  Google Scholar 

  71. Calmet, X., Graesser, M., Hsu, S.D.H.: Phys. Rev. Lett. 93, 211101 (2004). ([hep-th/0405033]; Int. J. Mod. Phys. D 14, 2195 (2005) [hep-th/0505144]; X. Calmet, Eur. Phys. J. C 54, 501 (2008) [Subnucl. Ser. 44, 625 (2008)] [hep-th/0701073])

    Article  ADS  MathSciNet  Google Scholar 

  72. Dvali, G., Gomez, C., Mukhanov, S.: Black Hole masses are quantized. arXiv:1106.5894 [hep-ph]

  73. Calmet, X., Fritzsch, H., Holtmannspotter, D.: Phys. Rev. D 64, 037701 (2001). ([hep-ph/0103012])

    Article  ADS  Google Scholar 

  74. Casadio, R., Micu, O., Nicolini, P.: Minimum length effects in black hole physics. In: Quantum Aspects of Black Holes, Chap. 10. Springer (2015)

    Google Scholar 

  75. Garay, L.J.: Int. J. Mod. Phys. A 10, 145 (1995). http://www.arxiv.org/abs/gr-qc/9403008

  76. Mead, C.A.: Phys. Rev. 135, B849 (1964)

    Google Scholar 

  77. Padmanabhan, T.: Class. Quant. Grav. 4, L107 (1987)

    Google Scholar 

  78. Salecker, H., Wigner, E.P.: Phys. Rev. 109, 571 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  79. Antoniadis, I., Atkins, M., Calmet, X.: JHEP 1111, 039 (2011). arXiv:1109.1160 [hep-ph]

  80. Atkins, M., Calmet, X.: Eur. Phys. J. C 70, 381 (2010). arXiv:1005.1075 [hep-ph]

  81. Atkins, M., Calmet, X.: Phys. Lett. B 695, 298 (2011). arXiv:1002.0003 [hep-th]

  82. Atkins, M., Calmet, X.: Phys. Lett. B 697, 37 (2011). arXiv:1011.4179 [hep-ph]

  83. Aydemir, U., Anber, M.M., Donoghue, J.F.: Phys. Rev. D 86, 014025 (2012). arXiv:1203.5153 [hep-ph]

  84. Calmet, X., Casadio, R.: Phys. Lett. B 734, 17 (2014) arXiv:1310.7410 [hep-ph]

  85. Han, T., Willenbrock, S.: Phys. Lett. B 616, 215 (2005). ([hep-ph/0404182])

    Article  ADS  MathSciNet  Google Scholar 

  86. Ren, J., Xianyu, Z.-Z., He, H.-J.: JCAP 1406, 032 (2014). arXiv:1404.4627 [gr-qc]

  87. Xianyu, Z.-Z., Ren, J., He, H.-J.: Phys. Rev. D 88(9), 096013 (2013). arXiv:1305.0251 [hep-ph]

  88. Tomboulis, E.: Phys. Lett. B 70, 361 (1977)

    Article  ADS  Google Scholar 

  89. Tomboulis, E.: Phys. Lett. B 97, 77 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  90. Amati, D., Ciafaloni, M., Veneziano, G.: JHEP 0802, 049 (2008). arXiv:0712.1209 [hep-th]

  91. Bhattacharya, T., Willenbrock, S.: Phys. Rev. D 47, 4022 (1993)

    Article  ADS  Google Scholar 

  92. Donoghue, J.F., El-Menoufi, B.K.: Phys. Rev. D 89, 104062 (2014). arXiv:1402.3252 [gr-qc]

  93. Wald, R.M.: Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics. Univ. Pr, Chicago (1994)

    MATH  Google Scholar 

  94. Lee, T.D., Wick, G.C.: Nucl. Phys. B 9, 209 (1969)

    Article  ADS  Google Scholar 

  95. Lee, T.D., Wick, G.C.: Phys. Rev. D 2, 1033 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  96. Grinstein, B., O’Connell, D., Wise, M.B.: Phys. Rev. D 79, 105019 (2009). arXiv:0805.2156 [hep-th]

  97. Calmet, X.: Int. J. Mod. Phys. A 26, 2855 (2011). arXiv:1012.5529 [hep-ph]

  98. Dvali, G., Giudice, G.F., Gomez, C., Kehagias, A.: JHEP 1108, 108 (2011). arXiv:1010.1415 [hep-ph]

  99. Amati, D., Ciafaloni, M., Veneziano, G.: Phys. Lett. B 216, 41 (1989)

    Article  ADS  Google Scholar 

  100. Amati, D., Ciafaloni, M., Veneziano, G.: Phys. Lett. B 289, 87 (1992)

    Article  ADS  Google Scholar 

  101. Amati, D., Ciafaloni, M., Veneziano, G.: Nucl. Phys. B 403, 707 (1993)

    Article  ADS  Google Scholar 

  102. Hossenfelder, S.: Living Rev. Rel. 16, 2 (2013). arXiv:1203.6191 [gr-qc]

Download references

Acknowledgments

This work is supported in part by the European Cooperation in Science and Technology (COST) action MP0905 “Black Holes in a Violent Universe” and by the Science and Technology Facilities Council (grant number ST/L000504/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Calmet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calmet, X. (2015). Fundamental Physics with Black Holes. In: Calmet, X. (eds) Quantum Aspects of Black Holes. Fundamental Theories of Physics, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-319-10852-0_1

Download citation

Publish with us

Policies and ethics