Skip to main content

Needle Detection in 3D Ultrasound Images Using Anisotropic Diffusion and Robust Fitting

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 427))

Abstract

Needle insertion is a minimally invasive medical procedure with a vast domain of applications. 3D localization of the needle is important in needle visual tracking by a physician and robotic automatic needle guidance. This paper investigates detection of the needle position in 3D ultrasound images. Ultrasound is a fast and non-invasive medical imaging modality that is suitable for intra-operative imaging. But unfortunately, ultrasound images suffer from speckle noise and other artifacts that degrade the image quality. We combined the RANSAC robust fitting algorithm with a structure adopted denoising method called anisotropic diffusion. The results show more accuracy compared to the previous method and significant improvement in the processing time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Novotny, P.M., Cannon, J.W., Howe, R.D.: Tool localization in 3D ultrasound images. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 969–970. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39903-2_127

    Chapter  Google Scholar 

  2. Ding, M., Cardinal, H.N., Guan, W., Fenster, A.: Automatic needle segmentation in 3D ultrasound images. In: SPIE Medical Imaging: Visualization, Image-Guided Procedures, and Display, vol. 4681, pp. 65–76 (2002). doi:10.1117/12.466907

  3. Ding, M., Cardinal, H.N., Fenster, A.: Automatic needle segmentation in three-dimensional ultrasound images using two orthogonal two-dimensional image projections. J. Med. Phys. 30(2), 222–234 (2003). doi:10.1118/1.1538231

    Article  Google Scholar 

  4. Aboofazeli, M., Abolmaesumi, P., Mousavi, P., Fichtinger, G.: A new scheme for curved needle segmentation in three-dimensional ultrasound images. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1067–1070. IEEE Press (2009). doi:10.1109/ISBI.2009.5193240

  5. Cao, K., Mills, D., Patwardhan, K.A.: Automated catheter detection in volumetric ultrasound. In: 10th IEEE International Symposium on Biomedical Imaging, pp. 37–40. IEEE Press (2013). doi:10.1109/ISBI.2013.6556406

  6. Zhou, H., Qiu, W., Ding, M., Zhang, S.: Automatic needle segmentation in 3D ultrasound images using 3D improved Hough transform. In: SPIE Medical Imaging: Visualization, Image-guided Procedures, and Modeling, vol. 6918, pp. 691821-1–691821-9 (2008). doi:10.1117/12.770077

  7. Qiu, W., Ding, M., Yuchi, M.: Needle segmentation using 3D quick randomized Hough transform. In: First International Conference on Intelligent Networks and Intelligent Systems ICINIS’08, pp. 449–452. IEEE Press (2008). doi:10.1109/ICINIS.2008.41

  8. Qiu, W., Yuchi, M., Ding, M., Tessier, D., Fenster, A.: Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy. Med. Phys. 40(4), 042902 (2013). doi:10.1118/1.4795337

    Article  Google Scholar 

  9. Neshat, H.R.S., Patel, R.V.: Real-time parametric curved needle segmentation in 3D ultrasound images. In: 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 670–675. IEEE Press (2008). doi:10.1109/BIOROB.2008.4762877

  10. Barva, M., Uhercik, M., Mari, J.M., Kybic, J., Duhamel, J.R., Liebgott, H., Hlavác, V., Cachard, C.: Parallel integral projection transform for straight electrode localization in 3D ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(7), 1559–1569 (2008). doi:10.1109/TUFFC.2008.833

    Article  Google Scholar 

  11. Uhercik, M., Kybic, J., Liebgott, H., Cachard, C.: Multi-resolution parallel integral projection for fast localization of a straight electrode in 3D ultrasound images. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 33–36. IEEE Press (2008). doi:10.1109/ISBI.2008.4540925

  12. Wei, Z., Gardi, L., Downey, D.B., Fenster, A.: Oblique needle segmentation for 3d trus-guided robot-aided transperineal prostate brachytherapy. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 960–963. IEEE Press (2004). doi:10.1109/ISBI.2004.1398699

  13. Yan, P., Cheeseborough, J.C., Chao, C.K.: Automatic shape-based level set segmentation for needle tracking in 3D TRUS-guided prostate brachytherapy. Ultrasound Med. Biol. 38(9), 1626–1636 (2012). doi:10.1016/j.ultrasmedbio.2012.02.011

    Article  Google Scholar 

  14. Novotny, P.M., Stoll, J.A., Vasilyev, N.V., Del Nido, P.J., Dupont, P.E., Zickler, T.E., Howe, R.D.: GPU based real-time instrument tracking with three-dimensional ultrasound. Med. Image Anal. 11(5), 458–464 (2007). doi:10.1016/j.media.2007.06.009

    Article  Google Scholar 

  15. Adebar, T.K., Okamura, A.M.: 3D segmentation of curved needles using doppler ultrasound and vibration. In: Barratt, D., Cotin, S., Fichtinger, G., Jannin, P., Navab, N. (eds.) IPCAI 2013. LNCS, vol. 7915, pp. 61–70. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38568-1_7

    Chapter  Google Scholar 

  16. Uhercik, M., Kybic, J., Liebgott, H., Cachard, C.: Model fitting using ransac for surgical tool localization in 3D ultrasound images. IEEE Trans. Biomed. Eng. 57(8), 1907–1916 (2010). doi:10.1109/TBME.2010.2046416

    Article  Google Scholar 

  17. Uhercik, M., Kybic, J., Cachard, C., Liebgott, H.: Line filtering for detection of microtools in 3D ultrasound data. In: IEEE International Ultrasonics Symposium (IUS), pp. 594–597. IEEE Press (2009). doi:10.1109/ULTSYM.2009.5441538

  18. Zhao, Y., Liebgott, H., Cachard, C.: Tracking micro tool in a dynamic 3D ultrasound situation using kalman filter and ransac algorithm. In: 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1076–1079. IEEE Press (2012). doi:10.1109/ISBI.2012.6235745

  19. Chatelain, P., Krupa, A., Marchal, M.: Real-time needle detection and tracking using a visually servoed 3D ultrasound probe. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1668–1673 (2013). doi:10.1109/ICRA.2013.6630795

  20. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990). doi:10.1109/34.56205

    Article  Google Scholar 

  21. Weickert, J., Scharr, H.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. J. Vis. Commun. Image Represent. 13(1), 103–118 (2002). doi:10.1006/jvci.2001.0495

    Article  Google Scholar 

  22. Frangakis, A.S., Hegerl, R.: Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135(3), 239–250 (2001). doi:10.1006/jsbi.2001.4406

    Article  Google Scholar 

  23. Fritz, L: Diffusion-based applications for interactive medical image segmentation. In: Proceedings of CESCG (Central European Seminar on Computer Graphics) (2006)

    Google Scholar 

  24. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). doi:10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M. Uhercik and J. Kybic for providing the access to the 3D ultrasound data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Malekian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Malekian, L., Talebi, H.A., Towhidkhah, F. (2014). Needle Detection in 3D Ultrasound Images Using Anisotropic Diffusion and Robust Fitting. In: Movaghar, A., Jamzad, M., Asadi, H. (eds) Artificial Intelligence and Signal Processing. AISP 2013. Communications in Computer and Information Science, vol 427. Springer, Cham. https://doi.org/10.1007/978-3-319-10849-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10849-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10848-3

  • Online ISBN: 978-3-319-10849-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics