Skip to main content

Observing the Gravity Field of Different Planets and Moons by Space-Borne Techniques: Predictions by Fast Error Propagation Tools

  • Conference paper
Gravity, Geoid and Height Systems

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 141))

  • 1416 Accesses

Abstract

In the first decade of the twenty first century, great strides have been made in observing the Earth’s gravity field by space-borne techniques such as high-low Satellite-to-Satellite tracking by the Global Positioning System (hl-SST, providing 3D information about orbit perturbations), low-low Satellite-to-Satellite tracking (ll-SST) and Satellite Gravity Gradiometry (SGG). In addition, great advances have been made in (preparations for) gravity field recovery for other bodies in the solar system as well, including Mars and the Moon, using tracking from the Deep Space Network (DSN), but also techniques such as hl-SST, ll-SST, Satellite Laser Ranging (SLR) and Delta VLBI.The purpose of the work described in this paper is to gain insight in the possibilities of observing the gravity field of various planetary bodies by space-borne observation techniques. For low-earth orbiting (LEO) satellites, efficient error propagation tools are available that allow an assessment of the gravity field performance as a function of orbital geometry and instrument or observation technique. These tools have been extended for use to other bodies in our solar system, including the Earth’s Moon, Jupiter, Mars, Titan, Enceladus, Europa and Phobos, which are in the scientific spotlight for various reasons. The gravity field performance has been assessed for satellites orbiting these bodies assuming these satellites can make use of DSN tracking or can acquire ll-SST or SGG observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson JD, Schubert G, Jacobson RA et al (1998) Europa’s differentiated internal structure: inferences from four galileo encounters. Science 281:2019–2022

    Article  Google Scholar 

  • Bills BG, Lemoine FG (1995) Gravitational and topographic isotropy of the earth, moon, mars, and venus. J Geophys Res 100(E12):26275. doi:10.1029/95JE02982

    Article  Google Scholar 

  • Boyce JM (2008) The smithsonian book of mars Konecky & Konecky, Old Saybrook, CT, p 107. ISBN 1-56852-714-4

    Google Scholar 

  • Colombo OL (1984) The global mapping of gravity with two satellites. vol 7, no. 3. Netherlands Geodetic Commission, Publications on Geodesy, New Series

    Google Scholar 

  • Drinkwater M, Haagmans R, Muzzi D et al (2007) The GOCE gravity mission: ESA’s first core explorer. In: 3rd GOCE user workshop, 6–8 November 2006, Frascati, pp 1–7. ESA SP-627

    Google Scholar 

  • ESA (1999) Gravity field and steady-state ocean circulation mission Reports for mission selection, The four candidate earth explorer core missions, SP-1233(1). European Space Agency (July 1999)

    Google Scholar 

  • Flokstra J, Cupurus R, Wiegerink RJ, van Essen MC (2009) A MEMS-based gravity gradiometer for future planetary missions. Cryogenics 49(11):665–668. ISSN 0011-2275

    Google Scholar 

  • Guillot T, Stevenson DJ, Hubbard WB, Saumon D (2004) Chapter 3: The interior of jupiter. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter: the planet, satellites and magnetosphere. Cambridge University Press, Cambridge. ISBN 0-521-81808-7

    Google Scholar 

  • Iess L, Rappaport NJ, Jacobson RA et al (2010) Gravity field, shape, and moment of inertia of titan. Science 327:1367–1369

    Article  Google Scholar 

  • Matsumoto K, Goossens S, Ishihara Y et al (2010) An improved lunar gravity field model from SELENE and historical tracking data: Revealing the farside gravity features. J Geophys Res 115(E06007):1–20. doi:10.1029/2009JE003499

    Google Scholar 

  • Mazarico E, Rowlands DD, Neumann GA et al (2012) Orbit determination of the lunar reconnaissance orbiter. J Geod 86:193–207. doi:10.1007/s00190-011-0509-4

    Article  Google Scholar 

  • MIT (2012) GRAIL Gravity recovery and interior laboratory. http://moon.mit.edu/overview.html. Last accessed 23 Nov 2012

  • NASA (2012a) GRAIL gravity recovery and interior laboratory. http://www.nasa.gov/mission_pages/grail/main/. Last accessed 8 Oct 2012

  • NASA (2012b) Lunar and planetary science. http://nssdc.gsfc.nasa.gov/planetary. Last accessed 25 Oct 2012

  • Pail R, Bruinsma S, Migliaccio F et al (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843. doi: 10.1007/s00190–011–0467–x)

    Article  Google Scholar 

  • Porco CC, Helfenstein P, Thomas PC et al (2006) Cassini observes the active south pole of enceladus. Science 311:1393–1401. doi:10.1126/science.1123013

    Article  Google Scholar 

  • Rappaport NJ, Iess L, Wahr J et al (2008) Can cassini detect a subsurface ocean in titan from gravity measurements? Icarus 194:711–720

    Article  Google Scholar 

  • Reigber Ch, Schwintzer P, LĂ¼hr H (1999) The CHAMP geopotential mission. In: Marson I, SĂ¼nkel H (ed) Bollettino di Geofisica Teorica e Applicata, vol 40, no. 3–4. pp. 285–289. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OHS, Trieste, Italy. ISSN 0006-6729

    Google Scholar 

  • Rosborough GW (1987) Radial, transverse, and normal satellite position perturbations due to the geopotential. Celest Mech 40:409–421

    Article  Google Scholar 

  • Rosenblatt P, Rivoldini A, Rambaux N, Dehant V (2011) Mass distribution inside Phobos: a key observational constraint for the origin of Phobos. In: EPSC Abstracts, vol 6, EPSC-DPS2011-761, EPSC-DPS Joint Meeting 2011

    Google Scholar 

  • Schrama EJO (1991) Gravity field error analysis: Applications of global positioning system receivers and gradiometers on low orbiting platforms. J Geophys Res 96(B12):20041–20051

    Article  Google Scholar 

  • Smith DE, Zuber MT, Sun X et al (2006) Two-way laser link over interplanetary distance. Science 311(53). doi: 10.1126/science.1120091

    Google Scholar 

  • Smith DE, Zuber MT, Torrence MH et al (2009) Time variations of Mars’ gravitational field and seasonal changes in the masses of the polar ice caps. J Geophys Res 114( E05002):1–15 doi:10.1029/2008JE003267

    Google Scholar 

  • Tapley BD, Reigber Ch (1999) GRACE: A satellite-to-satellite tracking geopotential mapping mission. In: Marson I, SĂ¼nkel H (eds) Bollettino di Geofisica Teorica e Applicata, vol 40, no 3–4, p 291. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OHS, Trieste, Italy. ISSN 0006-6729

    Google Scholar 

  • Visser PNAM (2005) Low-low satellite-to-satellite tracking: Applicability of analytical linear orbit perturbation theory. J Geod 79(1–3):160–166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. A. M. Visser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Visser, P.N.A.M. (2014). Observing the Gravity Field of Different Planets and Moons by Space-Borne Techniques: Predictions by Fast Error Propagation Tools. In: Marti, U. (eds) Gravity, Geoid and Height Systems. International Association of Geodesy Symposia, vol 141. Springer, Cham. https://doi.org/10.1007/978-3-319-10837-7_41

Download citation

Publish with us

Policies and ethics