Skip to main content

Fermi Liquid with Fermion Condensate

  • Chapter
  • First Online:
Theory of Heavy-Fermion Compounds

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 182))

  • 1708 Accesses

Abstract

Here we discuss the general properties of FCQPT leading to the emergence of FC. We present a microscopic derivation of the main equations of FC, and show that Fermi systems with FC form an entirely new class of Fermi liquids with its own topological structure, protecting the FC state. We construct the phase diagram, and explore the order parameter of these systems. We show that the fermion condensate has a strong impact on the observable physical properties of systems, where it is realized, up to relatively high temperatures of a few tens kelvin. Two different scenarios of the quantum critical point (QCP), a zero-temperature instability of the Landau state, related to the divergence of the effective mass, are also investigated. Flaws of the standard scenario of the QCP, where this divergence is attributed to the occurrence of some second–order phase transition, are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.A. Khodel, V.R. Shaginyan, JETP Lett. 51, 553 (1990)

    ADS  Google Scholar 

  2. V.A. Khodel, V.R. Shaginyan, V.V. Khodel, Phys. Rep. 249, 1 (1994)

    Article  ADS  Google Scholar 

  3. V.A. Khodel, J.W. Clark, H. Li, M.V. Zverev, Phys. Rev. Lett. 98, 216404 (2007)

    Article  ADS  Google Scholar 

  4. G.E. Volovik, JETP Lett. 53, 222 (1991)

    ADS  Google Scholar 

  5. V.R. Shaginyan, J.G. Han, J. Lee, Phys. Lett. A 329, 108 (2004)

    Article  ADS  Google Scholar 

  6. M.Y. Amusia, V.R. Shaginyan, JETP Lett. 73, 232 (2001)

    Article  ADS  Google Scholar 

  7. M.Y. Amusia, V.R. Shaginyan, Phys. Rev. B 63, 224507 (2001)

    Article  ADS  Google Scholar 

  8. C.M. Varma, Z. Nussionov, W. van Saarloos, Phys. Rep. 361, 267 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. C.M. Varma, P.B. Littlewood, S. Schmittrink, E. Abrahams, A.E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989)

    Article  ADS  Google Scholar 

  10. C.M. Varma, P.B. Littlewood, S. Schmittrink, E. Abrahams, A.E. Ruckenstein, Phys. Rev. Lett. 64, 497 (1990)

    Article  ADS  Google Scholar 

  11. G.E. Volovik, Acta Phys. Slov. 56, 49 (2006)

    Google Scholar 

  12. G.E. Volovik, in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, eds. by W.G. Unruh, R. Schutzhold. Springer Lecture Notes in Physics, vol. 718 (Springer, Orlando, 2007), p. 31

    Google Scholar 

  13. L.N. Oliveira, E.K.U. Gross, W. Kohn, Phys. Rev. Lett. 60, 2430 (1988)

    Article  ADS  Google Scholar 

  14. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. V.R. Shaginyan, M.Y. Amusia, K.G. Popov, Phys. Usp. 50, 563 (2007)

    Article  ADS  Google Scholar 

  16. V.R. Shaginyan, M.Y. Amusia, A.Z. Msezane, K.G. Popov, Phys. Rep. 492, 31 (2010)

    Article  ADS  Google Scholar 

  17. V.R. Shaginyan, JETP Lett. 77, 104 (2003)

    Article  ADS  Google Scholar 

  18. E.M. Lifshitz, L.P. Pitaevskii, Statisticheskaya Fizika (Statistical Physics), part 2. in Course of Theoretical Physics (Pergamon Press, Oxford, 1980)

    Google Scholar 

  19. V.A. Khodel, J.W. Clark, M.V. Zverev, Phys. Rev. B 78, 075120 (2008)

    Article  ADS  Google Scholar 

  20. V.A. Khodel, M.V. Zverev, V.M. Yakovenko, Phys. Rev. Lett. 95, 236402 (2005)

    Article  ADS  Google Scholar 

  21. D.V. Khveshchenko, R. Hlubina, T.M. Rice, Phys. Rev. B 48, 10766 (1993)

    Article  ADS  Google Scholar 

  22. I.E. Dzyaloshinskii, J. Phys. I (France) 6, 119 (1996)

    Article  Google Scholar 

  23. D. Lidsky, J. Shiraishi, Y. Hatsugai, M. Kohmoto, Phys. Rev. B 57, 1340 (1998)

    Article  ADS  Google Scholar 

  24. V.Y. Irkhin, A.A. Katanin, M.I. Katsnelson, Phys. Rev. Lett. 89, 076401 (2002)

    Article  ADS  Google Scholar 

  25. V.A. Khodel, V.R. Shaginyan, M.V. Zverev, JETP Lett. 65, 242 (1997)

    Article  Google Scholar 

  26. R.B. Laughlin, D. Pines, Proc. Natl. Acad. Sci. USA 97, 28 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. P.W. Anderson, Science 288, 480 (2000)

    Article  Google Scholar 

  28. V.A. Khodel, J.W. Clark, V.R. Shaginyan, Solid Stat. Comm. 96, 353 (1995)

    Article  ADS  Google Scholar 

  29. J. Dukelsky, V. Khodel, P. Schuck, V. Shaginyan, Z. Phys. 102, 245 (1997)

    Article  Google Scholar 

  30. V.A. Khodel, V.R. Shaginyan, in Condensed Matter Theories, vol. 12, ed. by J. Clark, V. Plant (Nova Science Publishers Inc., New York, 1997), p. 221

    Google Scholar 

  31. S.A. Artamonov, V.R. Shaginyan, JETP 92, 287 (2001)

    Article  ADS  Google Scholar 

  32. P.V. Bogdanov, A. Lanzara, S.A. Kellar, X.J. Zhou, E.D. Lu, W.J. Zheng, G. Gu, J.I. Shimoyama, K. Kishio, H. Ikeda, R. Yoshizaki, Z. Hussain, Z.X. Shen, Phys. Rev. Lett. 85, 2581 (2000)

    Article  ADS  Google Scholar 

  33. J.D. Koralek, J.F. Douglas, N.C. Plumb, Z. Sun, A.V. Fedorov, M.M. Murnane, H.C. Kapteyn, S.T. Cundiff, Y. Aiura, K. Oka, H. Eisaki, D.S. Dessau, Phys. Rev. Lett. 96, 017005 (2006)

    Article  ADS  Google Scholar 

  34. A. Kaminski, M. Randeria, J.C. Campuzano, M.R. Norman, H. Fretwell, J. Mesot, T. Sato, T. Takahashi, K. Kadowaki, Phys. Rev. Lett. 86, 1070 (2001)

    Google Scholar 

  35. T. Valla, A.V. Fedorov, P.D. Johnson, B.O. Wells, S.L. Hulbert, Q. Li, G.D. Gu, N. Koshizuka, Science 285, 2110 (1999)

    Article  Google Scholar 

  36. T. Valla, A.V. Fedorov, P.D. Johnson, Q. Li, G.D. Gu, N. Koshizuka, Phys. Rev. Lett. 85, 828 (2000)

    Article  ADS  Google Scholar 

  37. V.R. Shaginyan, M.Y. Amusia, K.G. Popov, Phys. Lett. A 373, 2281 (2009)

    Article  ADS  Google Scholar 

  38. D. Takahashi, S. Abe, H. Mizuno, D. Tayurskii, K. Matsumoto, H. Suzuki, Y. Onuki, Phys. Rev. B 67, 180407(R) (2003)

    Article  ADS  Google Scholar 

  39. P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, K.T.T. Tayama, O. Trovarelli, F. Steglich, Phys. Rev. Lett. 89, 056402 (2002)

    Article  ADS  Google Scholar 

  40. P. Coleman, C. PĂ©pin, Q. Si, R. Ramazashvili, J. Phys. Condens. Matter 13, R723 (2001)

    Article  ADS  Google Scholar 

  41. V.A. Khodel, JETP Lett. 86, 721 (2007)

    Article  ADS  Google Scholar 

  42. A.V. Chubukov, V.M. Galitski, V.M. Yakovenko, Phys. Rev. Lett. 94, 046404 (2005)

    Article  ADS  Google Scholar 

  43. A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975)

    Google Scholar 

  44. D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014)

    Article  ADS  Google Scholar 

  45. A.B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Wiley, New York, 1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miron Ya. Amusia .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amusia, M.Y., Popov, K.G., Shaginyan, V.R., Stephanovich, V.A. (2015). Fermi Liquid with Fermion Condensate. In: Theory of Heavy-Fermion Compounds. Springer Series in Solid-State Sciences, vol 182. Springer, Cham. https://doi.org/10.1007/978-3-319-10825-4_3

Download citation

Publish with us

Policies and ethics