Skip to main content

Anti-Models:

An Alternative Way to Discriminative Training

  • Conference paper
Text, Speech and Dialogue (TSD 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8655))

Included in the following conference series:

  • 1504 Accesses

Abstract

Traditional discriminative training methods modify Hidden Markov Model (HMM) parameters obtained via a Maximum Likelihood (ML) criterion based estimator. In this paper, anti-models are introduced instead. The anti-models are used in tandem with ML models to incorporate a discriminative information from training data set and modify the HMM output likelihood in a discriminative way. Traditional discriminative training methods are prone to over-fitting and require an extra stabilization. Also, convergence is not ensured and usually “a proper” number of iterations is done. In the proposed anti-models concept, two parts, positive model and anti-model, are trained via ML criterion. Therefore, the convergence and the stability are ensured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vanek, J., Trmal, J., Psutka, J.V., Psutka, J.: Optimized Acoustic Likelihoods Computation for NVIDIA and ATI/AMD Graphics Processors. IEEE Transactions on Audio, Speech and Language Processing 20(6), 1818–1828 (2012)

    Article  Google Scholar 

  2. Vanek, J., Trmal, J., Psutka, J., Psutka, J.: Full Covariance Gaussian Mixture Models Evaluation on GPU. In: Proc. IEEE ISSPIT, Vietnam, Ho Chi Minh City (2012)

    Google Scholar 

  3. Heigold, G., Schlüter, R., Ney, H., Wiesler, S.: Discriminative Training for Automatic Speech Recognition: Modeling, Criteria, Optimization, Implementation, and Performance. IEEE Signal Processing Magazine 29, 58–69 (2012), doi:10.1109/MSP.2012.2197232

    Article  Google Scholar 

  4. Radová, V., Psutka, J.: UWB_S01 Corpus – A Czech Read-Speech Corpus. In: Proc. of the ICSLP 2000, Beijing, China, pp. 732–735 (2000)

    Google Scholar 

  5. Normandin, Y., Morgera, D.: An Improved MMIE Training Algorithm for Speaker-Independent Small Vocabulary, Continuous Speech Recognition. In: Proc. of the IEEE, ICASSP 1991, Toronto, Canada, pp. 537–540 (1991)

    Google Scholar 

  6. Kapadia, S.: Discriminative Training of Hidden Markov Models. Ph.D. thesis, Cambridge University, Department of Engineering (1998)

    Google Scholar 

  7. Povey, D.: Discriminative Training for Large Vocabulary Speech Recognition. Ph.D. thesis, Cambridge University, Department of Engineering (2003)

    Google Scholar 

  8. Bahl, L.R., et al.: Maximum Mutual Information Estimation of Hidden Markov Model Parameters for Speech Recognition. In: ICASSP 1986, Tokyo, Japan (1986)

    Google Scholar 

  9. Povey, D., et al.: Improved discriminative training techniques for large vocabulary continuous speech recognition. In: ICASSP 2001, Salt Lake City, Utah, USA, pp. 45–48 (2001)

    Google Scholar 

  10. Povey, D., Woodland, P.C.: Minimum Phone Error and I-Smoothing for Improved Discriminative Training. In: Proc. ICASSP 2002, Orlando, USA (2002)

    Google Scholar 

  11. Katagiri, S., Lee, C.-H., Juang, B.-H.: New Discriminative Training Algorithms Based on the Generalized Descent Method. In: Proc. IEEE Neural Networks for Signal Processing, pp. 299–308 (1991)

    Google Scholar 

  12. Juang, B.-H., Katagiri, S.: Discriminative Learning for Minimum Error Classification. IEEE Transactions on Acoustic, Speech and Signal Processing 40(12), 3043–3054 (1992)

    Article  MATH  Google Scholar 

  13. Chou, W., Juang, B.-H., Lee, C.-H.: Segmental GDP Training of HMM Based Speech Recognizer. In: Proc. ICASSP, vol. 1, pp. 473–476 (1992)

    Google Scholar 

  14. Povey, D., Kanevsky, D., Kingsbury, B., Ramabhadran, B., Saon, G., Visweswariah, K.: Boosted MMI for Model and Feature-Space Discriminative Training. In: Proc. ICASSP 2008, Las Vegas, USA, pp. 4057–4060 (2008)

    Google Scholar 

  15. Povey, D., Woodland, P.C., Gales, M.J.F.: Discriminative MAP for Acoustic Model Adaptation. In: Proc. ICASSP 2003, Hong Kong, pp. pp. I–312 (2003)

    Google Scholar 

  16. Zheng, J., Stolcke, A.: Improved Discriminative Training. Using Phone Lattices. In: Proc. Eurospeech 2005, Lisbon, Portugal (2005)

    Google Scholar 

  17. Bell, P.: Full Covariance Modelling for Speech Recognition. Ph.D. Thesis, The University of Edinburgh

    Google Scholar 

  18. Lee, Y., Lee, K.Y., Lee, J.: The Estimating Optimal Number of Gaussian Mixtures Based on Incremental k-means for Speaker Identification. International Journal of Information Technology 12(7), 13–21 (2006)

    Google Scholar 

  19. Figueiredo, M., Leitão, J., Jain, A.: On Fitting Mixture Models. In: Hancock, E.R., Pelillo, M. (eds.) EMMCVPR 1999. LNCS, vol. 1654, pp. 54–69. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Mclachlan, G.J., Peel, D.: On a Resampling Approach to Choosing the Number of Components in Normal Mixture Models. Computing Science and Statistics 28, 260–266 (1997)

    Google Scholar 

  21. Paclík, P., Novovičová, J.: Number of Components and Initialization in Gaussian Mixture Model for Pattern Recognition. In: Proc. Artificial Neural Nets and Genetic Algorithms, pp. 406–409. Springer, Wien (2001)

    Chapter  Google Scholar 

  22. Vaněk, J., Machlica, L., Psutka, J., Psutka, J.: Covariance Matrix Enhancement Approach to Train Robust Gaussian Mixture Models of Speech Data. In: Železný, M., Habernal, I., Ronzhin, A. (eds.) SPECOM 2013. LNCS, vol. 8113, pp. 92–99. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Pražák, A., Psutka, J.V., Hoidekr, J., Kanis, J., Müller, L., Psutka, J.?: Automatic online subtitling of the Czech parliament meetings. In: Sojka, P., Kopeček, I., Pala, K., et al. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 501–508. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Vaněk, J., Psutka, J. (2014). Anti-Models:. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech and Dialogue. TSD 2014. Lecture Notes in Computer Science(), vol 8655. Springer, Cham. https://doi.org/10.1007/978-3-319-10816-2_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10816-2_54

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10815-5

  • Online ISBN: 978-3-319-10816-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics