Using Graph Transformation Algorithms to Generate Natural Language Equivalents of Icons Expressing Medical Concepts

  • Pascal Vaillant
  • Jean-Baptiste Lamy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8655)

Abstract

A graphical language addresses the need to communicate medical information in a synthetic way. Medical concepts are expressed by icons conveying fast visual information about patients’ current state or about the known effects of drugs. In order to increase the visual language’s acceptance and usability, a natural language generation interface is currently developed. In this context, this paper describes the use of an informatics method – graph transformation – to prepare data consisting of concepts in an OWL-DL ontology for use in a natural language generation component. The OWL concept may be considered as a star-shaped graph with a central node. The method transforms it into a graph representing the deep semantic structure of a natural language phrase. This work may be of future use in other contexts where ontology concepts have to be mapped to half-formalized natural language expressions.

Keywords

Graph grammars Natural Language Generation Health and Medicine Iconic Language 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lamy, J.-B., Duclos, C., Bar-Hen, A., Ouvrard, P., Venot, A.: An iconic language for the graphical representation of medical concepts. BMC Med. Inform. Decis. Mak. 8 (16) (2008)Google Scholar
  2. 2.
    Welty, C., McGuinness, D.L., Smith, M.K.: OWL web ontology language guide. W3C Recommandation. W3C (2004), http://www.w3.org/TR/owl-guide/
  3. 3.
    Wilcock, G.: Talking OWLs: Towards an ontology verbalizer. In: Proc. ISWC Workshop on Human Language Technology for the Semantic Web and Web Services, pp. 109–112 (2003)Google Scholar
  4. 4.
    Hewlett, D., Kalyanpur, A., Kolovski, V., Halaschek-Wiener, C.: Effective NL paraphrasing of ontologies on the semantic web. In: Proc. ISWC Workshop on End User Semantic Web Interaction, vol. 172. CEUR-WS.org (2005)Google Scholar
  5. 5.
    Bontcheva, K., Wilks, Y.: Automatic report generation from ontologies: the MIAKT approach. In: Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 324–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Sowa, J.: Conceptual structures: information processing in mind and machine. Addison Wesley, New York (1984)MATHGoogle Scholar
  7. 7.
    Rector, A.L., Bechhofer, S., Goble, C.A., Horrocks, I., Nowlan, W.A., Solomon, W.D.: The GRAIL concept modelling language for medical terminology. Artif. Intell. Med. 9(2), 139–171 (1997)CrossRefGoogle Scholar
  8. 8.
    Ehrig, H., Habel, A., Kreowski, H.J.: Introduction to Graph Grammars with Applications to Semantic Networks. Comput. Math. Appl. 23(6-9), 557–572 (1992)CrossRefMATHGoogle Scholar
  9. 9.
    Schürr, A., Winter, A.J., Zündorf, A.: Graph grammar engineering with PROGRES. In: Botella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp. 219–234. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
    Blostein, D., Fahmy, H., Grbavec, A.: Issues in the practical use of graph rewriting. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 38–55. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  11. 11.
    Schabes, Y., Abeillé, A., Joshi, A.K.: Parsing strategies with ‘lexicalized’ grammars: application to Tree Adjoining Grammars. In: COLING 1988: Proc. 12th International Conference on Computational Linguistics, Budapest, August 22-27, pp. 578–583 (1988)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pascal Vaillant
    • 1
    • 2
    • 3
  • Jean-Baptiste Lamy
    • 1
    • 2
    • 3
  1. 1.Université Paris 13, Sorbonne Paris Cité, LIMICS, (UMRS 1142)Bobigny cedexFrance
  2. 2.INSERM, U1142, LIMICSParisFrance
  3. 3.Sorbonne Universités, UPMC Univ Paris 06, UMRS 1142, LIMICSParisFrance

Personalised recommendations