Advertisement

SuMACC Project’s Corpus

A Topic-Based Query Extension Approach to Retrieve Multimedia Documents
  • Mohamed Morchid
  • Richard Dufour
  • Usman Niaz
  • Francis Bouvier
  • Clément de Groc
  • Claude de Loupy
  • Georges Linarès
  • Bernard Merialdo
  • Bertrand Peralta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8655)

Abstract

The SuMACC project aims at automatically tracking new multimodal entities on Internet. The goal of the project is to propose robust multimedia methods that define relevant patterns allowing to automatically retrieve these entities. This paper describes the SuMACC corpus collected on video-sharing platforms using word-queries. Since concepts are limited to a single or few words, querying video-sharing platforms with the concept only can easily introduce irrelevant collected videos. In this paper, we propose to use an extended query obtained by mapping the initial concept into a topic space from a Latent Dirichlet Allocation (LDA) algorithm. This topic-based query extension approach allows to better retrieve videos related to the targeted concept. As a result, a corpus of 7,517 videos, extracted using the simple (i.e. concept only) and the extended queries, from 47 concepts, was obtained. Results show the effectiveness of the proposed thematic querying approach compared to the simple concept query in terms of relevance (+ 21%) and ambiguity (− 4%). The annotation process as well as the corpus statistics are detailed in this paper.

Keywords

Multimedia corpus Annotation Latent Dirichlet Allocation Topic modeling Extended queries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ando, R.K., Lee, L.: Iterative Residual Rescaling: An analysis and generalization of LSI. In: Proceedings of SIGIR, pp. 154–162 (2001)Google Scholar
  2. 2.
    Bertier, M., Guerraoui, R., Leroy, V., Kermarrec, A.M.: Toward personalized query expansion. In: ACM EuroSys Workshop on Social Network Systems (SNS), pp. 7–12 (2009)Google Scholar
  3. 3.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  4. 4.
    Crouch, C.J., Crouch, D.B., Nareddy, K.R.: The automatic generation of extended queries. In: ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 369–383 (1990)Google Scholar
  5. 5.
    Feng, B., Cao, J., Chen, Z., Zhang, Y., Lin, S.: Multi-modal query expansion for web video search. In: ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 721–722 (2010)Google Scholar
  6. 6.
    Gauch, S., Wang, J., Rachakonda, S.M.: A corpus analysis approach for automatic query expansion and its extension to multiple databases. ACM Transactions on Information Systems 17(3), 250–269 (1999)CrossRefGoogle Scholar
  7. 7.
    Hofmann, T.: Probabilistic latent semantic indexing. In: ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50–57 (1999)Google Scholar
  8. 8.
    Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, pp. 321–330 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mohamed Morchid
    • 1
  • Richard Dufour
    • 1
  • Usman Niaz
    • 2
  • Francis Bouvier
    • 3
  • Clément de Groc
    • 3
  • Claude de Loupy
    • 3
  • Georges Linarès
    • 1
  • Bernard Merialdo
    • 2
  • Bertrand Peralta
    • 4
  1. 1.LIA - University of AvignonAvignonFrance
  2. 2.SyllabsParisFrance
  3. 3.EURECOMSophia AntipolisFrance
  4. 4.WIKIOParisFrance

Personalised recommendations