Skip to main content

Thermo-Chemical Mantle Convection Simulations Using Gaia

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘14

Abstract

Thermally and chemically driven buoyancy in planetary mantles cause the slow creep of material, which is ultimately responsible for the heat transport from the deep interior and the large-scale dynamics inside the Earth and other terrestrial planets. With the increasing computational power and the improvement of numerical methods, numerical simulations of planetary interiors have become one the principal tools for understanding the processes active during the thermo-chemical evolution of a terrestrial planet considering constraints posed by geological and geochemical surface observations delivered by various planetary missions. In the present work we present technical aspects and applications to solid-state mantle convection using our code Gaia in Cartesian/cylindrical/spherical geometry. We test the convergence of several numerical solvers that have been implemented in our code, and show the code performance on the HLRS System with up to 10,000 cores. Further we compare our results with published benchmark values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blankenbach, B., Busse, F., Christensen, U., Cserepes, L., Gunkel, D., Hansen, U., Harder, H., Jarvis, G., Koch, M., Marquart, G., Moore, D., Olson, P., Schmeling, H., Schnaubelt, T.: A benchmark comparison for mantle convection codes. Geophys. J. Int. 98, 23–38 (1989)

    Article  Google Scholar 

  2. Breuer, D., Moore, W.B.: Dynamics and thermal history of the terrestrial planets, the Moon, and Io. Treatise Geophys. 10, 299–348 (2007)

    Article  Google Scholar 

  3. Charlier, B., Grove, T.L., Zuber, M.T.: Phase equilibria of ultramafic compositionson Mercury and the origin of the compositional dichotomy. EPSL 363, 50–60 (2013)

    Article  Google Scholar 

  4. Christensen, U.: Convection with pressure- and temperature-dependent non-Newtonian rheology. Geophys. J. R. Astron. Soc. 77, 343–384 (1984)

    Article  Google Scholar 

  5. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics, 2nd rev. edn. Springer, Berlin/New York (1999). ISBN:3-540-65373-2

    Google Scholar 

  6. Foley, C.N., Wadhwa, M., Borg, L.E., Janney, P.E., Hines, R., Grove, T.L.: The early differentiation history of Mars from182W–142Nd isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 69, 4557–4571 (2005)

    Article  Google Scholar 

  7. Grasset, O., Parmentier, E.M.: Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: implications for planetary thermal evolution. J. Geophys. Res. 103, 18171–18181 (1998)

    Article  Google Scholar 

  8. Hofmann, A.W.: Mantle geochemistry: the message from oceanic volcanism. Nature 385(6613), 219–229 (1997)

    Article  Google Scholar 

  9. Hüttig, C., Stemmer, K.: Finite volume discretization for dynamic viscosities on Voronoi grids. Phys. Earth Planet. Inter. (2008). doi:10.1016/j.pepi.2008.07.007

    Google Scholar 

  10. Hüttig, C., Stemmer, K.: The spiral grid: a new approach to discretize the sphere and its application to mantle convection. Geochem. Geophys. Geosyst. Q02018 9 (2008). doi:10.1029/2007GC001581

    Google Scholar 

  11. Hüttig, C., Tosi, N., Moore, W.B.: An improved formulation of the incompressible Navier-Stokes equations with variable viscosity. Phys. Earth Planet. Inter. 220, 11–18 (2013). doi:10.1016/j.pepi.2013.04.002

    Article  Google Scholar 

  12. Ismail-Zadeh, A., Tackley, P.J.: Computational Methods for Geodynamics. Cambridge University 368 Press, Cambridge/New York (2010)

    Google Scholar 

  13. Karato, S., Paterson, M.S., Fitz Gerald, J.D.: Rheology of synthetic olivine aggregates: influence of grain size and water. J. Geophys. Res. 91, 8151–8176 (1986)

    Article  Google Scholar 

  14. Plesa, A.-C.: Mantle convection in a 2D spherical shell. In: Rückemann, C.-P., Christmann, W., Saini, S., Pankowska, M. (eds.) Proceedings of the First International Conference on Advanced Communications and Computation (INFOCOMP 2011), 23–29 Oct 2011, Barcelona, pp. 167–172. ISBN:978-1-61208-161-8. Retrieved on 3 Nov 2011. From http://www.thinkmind.org/download.php?articleid=infocomp_2011_2_10_10002

  15. Plesa, A.-C., Tosi, N., Hüttig, C.: Thermo-chemical convection in planetary mantles: advection methods and magma ocean overturn simulations. In: Rückemann, C.-P. (ed.) Integrated Information and Computing Systems for Natural, Spatial, and Social Sciences. Information Science Reference, Hershey (2013)

    Google Scholar 

  16. Ritsema, J., van Heijst, H.J., Woodhouse, J.H.: Global transition zone tomography. J. Geophys. Res. Solid Earth 109(B2) (2004). doi:10.1029/2003jb002610

    Google Scholar 

  17. Roberts, J.H., Zhong, S.: Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J. Geophys. Res. E Planet. 111, E06013 (2006)

    Google Scholar 

  18. Schubert, G., Turcotte, D.L., Olson, P.: Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge/New York (2001)

    Book  Google Scholar 

  19. Tackley, P.J., King, S.D.: Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations. Geochem. Geophys. Geosyst. 4(4), 8302 (2003). doi:10.1029/2001GC000214

    Article  Google Scholar 

  20. Tosi, N., Plesa, A.-C., Breuer, D.: Overturn and evolution of a crystallized magma ocean: a numerical parameter study for Mars. J. Geophys. Res. Planet. 118, 1–17 (2013). doi:10.1002/jgre.20109

    Google Scholar 

  21. van Keken, P.E., King, S.D., Schmeling, H., Christensen, U.R., Neumeister, D., Doin, M.-P.: A comparison of methods for the modeling of thermochemical convection. J. Geophys. Res. 102, 22477–22495 (1997)

    Article  Google Scholar 

  22. Weber, R.C., Lin, P.Y., Garnero, E.J., Williams, Q., Lognonne, P.: Seismic detection of the Lunar core. Science 331, 309–312 (2011). doi:10.1126/science.1199375

    Article  Google Scholar 

  23. Zhong, S., McNamara, A.K., Tan, E., Moresi, L., Gurnis, M.: A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9, Q10017 (2008). doi:10.1029/2008GC002048

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Helmholtz Association through the research alliance “Planetary Evolution and Life”, by the Deutsche Forschungs Gemeinschaft (grant TO 704/1-1), by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office through the Planet Topers alliance, and by the High Performance Computing Center Stuttgart (HLRS) through the project “Mantle Thermal and Compositional Simulations (MATHECO)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana-Catalina Plesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Plesa, AC., Hüttig, C., Tosi, N., Breuer, D. (2015). Thermo-Chemical Mantle Convection Simulations Using Gaia. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘14. Springer, Cham. https://doi.org/10.1007/978-3-319-10810-0_40

Download citation

Publish with us

Policies and ethics