Skip to main content

Application of Tunable-Slip Boundary Conditions in Particle-Based Simulations

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘14

Abstract

Compared to macroscopic systems, fluids on the micro- and nanoscales have a larger surface-to-volume ratio, thus the boundary condition becomes crucial in determining the fluid properties. No-slip boundary condition has been applied successfully to wide ranges of macroscopic phenomena, but its validity in microscopic scale is questionable. A more realistic description is that the flow exhibits slippage at the surface, which can be characterized by a Navier slip length. We present a tunable-slip method by implementing Navier boundary condition in particle-based computer simulations (Dissipative Particle Dynamics as an example). To demonstrate the validity and versatility of our method, we have investigated two model systems: (i) the flow past a patterned surface with alternating no-slip/partial-slip stripes and (ii) the diffusion of a spherical colloidal particle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Squires, T.M., Quake, S.R.: Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977 (2005)

    Article  Google Scholar 

  2. Bocquet, L., Barrat, J.L.: Flow boundary conditions from nano- to micro-scales. Soft Matter 3, 685 (2007)

    Article  Google Scholar 

  3. Hoogerbrugge, P.J., Koelman, J.M.V.A.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155 (1992)

    Article  Google Scholar 

  4. Español, P., Warren, P.B.: Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191 (1995)

    Article  Google Scholar 

  5. Groot, R.D., Warren, P.B.: Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423 (1997)

    Article  Google Scholar 

  6. Smiatek, J., Allen, M., Schmid, F.: Tunable-slip boundaries for coarse-grained simulations of fluid flow. Eur. Phys. J. E 26, 115 (2008)

    Article  Google Scholar 

  7. Weeks, J.D., Chandler, D., Andersen, H.C.: Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237 (1971)

    Article  Google Scholar 

  8. Vinogradova, O.I.: Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11, 2213 (1995)

    Article  Google Scholar 

  9. Philip, J.R.: Flows satisfying mixed no-slip and no-shear conditions. J. Appl. Math. Phys. 23, 353 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lauga, E., Stone, H.A.: Effective slip in pressure-driven stokes flow. J. Fluid Mech. 489, 55 (2003)

    Google Scholar 

  11. Belyaev, A.V., Vinogradova, O.I.: Effective slip in pressure-driven flow past superhydrophobic stripes. J. Fluid Mech. 652, 489 (2010)

    Google Scholar 

  12. Zhou, J., Belyaev, A.V., Schmid, F., Vinogradova, O.I.: Anisotropic flow in striped superhydrophobic channels. J. Chem. Phys. 136, 194706 (2012)

    Article  Google Scholar 

  13. Asmolov, E.S., Zhou, J., Schmid, F., Vinogradova, O.I.: Effective slip-length tensor for a flow over weakly slipping stripes. Phys. Rev. E 88, 023004 (2013)

    Article  Google Scholar 

  14. Zhou, J., Asmolov, E.S., Schmid, F., Vinogradova, O.I.: Effective slippage on superhydrophobic trapezoidal grooves. J. Chem. Phys. 139, 174708 (2013)

    Article  Google Scholar 

  15. Smiatek, J., Sega, M., Holm, C., Schiller, U.D., Schmid, F.: Mesoscopic simulations of the counterion-induced electro-osmotic flow: A comparative study. J. Chem. Phys. 130, 244702 (2009)

    Article  Google Scholar 

  16. Smiatek, J., Schmid, F.: Polyelectrolyte electrophoresis in nanochannels: A dissipative particle dynamics simulation. J. Phys. Chem. B 114, 6266 (2010)

    Article  Google Scholar 

  17. Smiatek, J., Schmid, F.: Mesoscopic simulations of polyelectrolyte electrophoresis in nanochannels. Comput. Phys. Commun. 182, 1941 (2011)

    Article  Google Scholar 

  18. Meinhardt, S., Smiatek, J., Eichhorn, R., Schmid, F.: Separation of chiral particles in micro- or nanofluidic channels. Phys. Rev. Lett. 108, 214504 (2012)

    Article  Google Scholar 

  19. Russel, W.B., Saville, D.A., Schowalter, W.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  20. Dhont, J.: An Introduction to Dynamics of Colloids. Elsevier, Amsterdam (1996)

    Google Scholar 

  21. Ahlrichs, P., Dünweg, B.: Simulation of a single polymer chain in solution by combining lattice boltzmann and molecular dynamics. J. Chem. Phys. 111, 8225 (1999)

    Article  Google Scholar 

  22. Lobaskin, V., Dünweg, B.: A new model for simulating colloidal dynamics. New J. Phys. 6, 54 (2004)

    Article  Google Scholar 

  23. Chatterji, A., Horbach, J.: Combining molecular dynamics with lattice boltzmann: A hybrid method for the simulation of (charged) colloidal systems. J. Chem. Phys. 122, 184903 (2005)

    Article  Google Scholar 

  24. Hasimoto, H.: On the periodic fundamental solutions of the stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhou, J., Schmid, F.: Dielectric response of nanoscopic spherical colloids in alternating electric fields: a dissipative particle dynamics simulation. J. Phys. Condens. Matter 24, 464112 (2012)

    Article  Google Scholar 

  26. Zhou, J., Schmid, F.: AC-field-induced polarization for uncharged colloids in salt solution: a dissipative particle dynamics simulation. Eur. Phys. J. E 36, 33 (2013)

    Article  Google Scholar 

  27. Zhou, J., Schmitz, R., Dünweg, B., Schmid, F.: Dynamic and dielectric response of charged colloids in electrolyte solutions to external electric fields. J. Chem. Phys. 139, 024901 (2013)

    Article  Google Scholar 

  28. Zhou, J., Schmid, F.: Eur. Phys. Computer simulations of charged colloids in alternating electric fields. J. Spec. Top. 222, 2911 (2013)

    Google Scholar 

  29. Swan, J.W., Khair, A.S.: On the hydrodynamics of ‘slip-slick’ spheres. J. Fluid Mech. 606, 115 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Khair, A.S., Squires, T.M.: The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys. Fluids 21, 042001 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the HLRS Stuttgart for a generous grant of computer time on HERMIT. This research was supported by the DFG through the SFB TR6, SFB 985, SFB 1066, and by RAS through its priority program “Assembly and Investigation of Macromolecular Structures of New Generations”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajia Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, J., Smiatek, J., Asmolov, E.S., Vinogradova, O.I., Schmid, F. (2015). Application of Tunable-Slip Boundary Conditions in Particle-Based Simulations. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘14. Springer, Cham. https://doi.org/10.1007/978-3-319-10810-0_2

Download citation

Publish with us

Policies and ethics