Skip to main content

GaP/Si: Studying Semiconductor Growth Characteristics with Realistic Quantum-Chemical Models

  • 1754 Accesses

Abstract

The understanding of microscopic processes and properties is crucial for the development and efficient production of inorganic III/V semiconductor materials. Those materials are grown in chemical vapour deposition procedures where elementary steps have not yet been thoroughly understood. Ab initio calculations are capable to investigate those atomic and electronic properties. Modern implementations of Density Functional Theory were applied to study layered bulk structures, periodic surface properties and adatom transport on Si(001) and GaP-Si(001) materials. By increasing cell sizes and number of atoms to scales that only supercomputing facilities can handle, a realistic chemical environment can be modeled with increased structural degrees of freedom. Bulk supercells were constructed in order to model realistic interfaces between two thin films in the nanometer scale. Supercell models in slab geometry were set up and converged with respect to the volume of vacuum and number of relaxed atoms for an accurate description of slab surfaces. These studies enable a direct comparison to experimental studies on these materials.

Keywords

  • Density Functional Theory
  • Surface Reconstruction
  • Vacuum Region
  • Hessian Matrice
  • Kinetic Monte Carlo Simulation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-10810-0_15
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-10810-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    Accurate energy convergence criteria (10−6 eV), kinetic energy cutoff for the basis set at 400 eV, 32 k-points, Gaussian smearing (σ = 0. 05).

  2. 2.

    Energy converged to 10−7 eV and forces to 10−4 eV/\(\, \mathring{A}\) at a kinetic energy cutoff of 400 eV with Gaussian-type smearing (σ = 0. 05).

  3. 3.

    The H atoms were positioned in accordance to silane’s, SiH 4, molecular geometry and relaxed in a preparational calculation.

  4. 4.

    Analytical Hessian matrices of the adatoms at Min and TS were computed to identify first order saddle points indicating the hopping transition state with the imaginary mode indicating the direction of translation.

References

  1. Jandieri, K., Kunert, B., Liebich, S., Zimprich, M., Volz, K., Stolz, W., Gebhard, F., Baranovski, S.D., Koukourakis, N., Gerhardt, N.C., Hofmann, M.R.: Phys. Rev. B 87(3), 035303 (2013). doi:10.1103/PhysRevB.87.035303

    CrossRef  Google Scholar 

  2. Lange, C., Chatterjee, S., Kunert, B., Volz, K., Stolz, W., Rühle, W.W., Gerhardt, N.C., Hofmann, M.R.: Gain characteristics and lasing of Ga(NAsP) multi-quantum well structures. Phys. Status Solidi (C) 6(2), 576 (2009). doi:10.1002/pssc.200880360

    Google Scholar 

  3. Kunert, B., Volz, K., Koch, J., Stolz, W.: Appl. Phys. Lett. 88(18), 182108 (2006). doi:10.1063/1.2200758

    CrossRef  Google Scholar 

  4. Kunert, B., Volz, K., Stolz, W.: Phys. Status Solidi (B) 244(8), 2730 (2007). doi:10.1002/pssb.200675609

    Google Scholar 

  5. Liebich, S., Zimprich, M., Beyer, A., Lange, C., Franzbach, D.J., Chatterjee, S., Hossain, N., Sweeney, S.J., Volz, K., Kunert, B., Stolz, W.: Appl. Phys. Lett. 99(7), 071109 (2011). doi:10.1063/1.3624927

    CrossRef  Google Scholar 

  6. Németh, I., Kunert, B., Stolz, W., Volz, K.: J. Cryst. Growth 310(7–9), 1595 (2008). doi:10.1016/j.jcrysgro.2007.11.127

    CrossRef  Google Scholar 

  7. Volz, K., Beyer, A., Witte, W., Ohlmann, J., Németh, I., Kunert, B., Stolz, W.: J. Cryst. Growth 315(1), 37 (2011). doi:10.1016/j.jcrysgro.2010.10.036

    CrossRef  Google Scholar 

  8. Liang, D., Bowers, J.E.: Nat. Photonics 4(8), 511 (2010). doi:10.1038/nphoton.2010.167

    CrossRef  Google Scholar 

  9. Dürr, M., Biedermann, A., Hu, Z., Höfer, U., Heinz, T.F.: Science 296(5574), 1838 (2002). doi:10.1126/science.1070859

    CrossRef  Google Scholar 

  10. Kunert, B., Zinnkann, S., Volz, K., Stolz, W.: J. Cryst. Growth 310(23), 4776 (2008). doi:10.1016/j.jcrysgro.2008.07.097

    CrossRef  Google Scholar 

  11. Beyer, A., Ohlmann, J., Liebich, S., Heim, H., Witte, G., Stolz, W., Volz, K.: J. Appl. Phys. 111(8), 083534 (2012). doi:10.1063/1.4706573

    CrossRef  Google Scholar 

  12. Saxler, A., Walker, D., Kung, P., Zhang, X., Razeghi, M., Solomon, J., Mitchel, W.C., Vydyanath, H.R.: Appl. Phys. Lett. 71(22), 3272 (1997). doi:10.1063/1.120310

    CrossRef  Google Scholar 

  13. Fukuda, Y., Kobayashi, T., Mochizuki, S.: Appl. Surf. Sci. 176, 218 (2001)

    CrossRef  Google Scholar 

  14. Hohenberg, P., Kohn, W.: Phys. Rev. 136(3B), B864 (1964)

    CrossRef  MathSciNet  Google Scholar 

  15. Kohn, W., Sham, L.J., Others: Phys. Rev. 140(4A), A1133 (1965)

    MathSciNet  Google Scholar 

  16. Kresse, G., Furthmüller, J.: Phys. Rev. B Condens. Matter 54(16), 11169 (1996)

    CrossRef  Google Scholar 

  17. Kresse, G., Furthmüller, J.: Comput. Mater. Sci. 6(15) p. 15 (1996)

    Google Scholar 

  18. Schmidt, W.G., Bernholc, J., Bechstedt, F.: Appl. Surf. Sci. 166, 179 (2000)

    CrossRef  Google Scholar 

  19. Hafner, J.: J. Comput. Chem. 29(13), 2044 (2008). doi:10.1002/jcc

    CrossRef  Google Scholar 

  20. Kempisty, P., Krukowski, S., Strak, P., Sakowski, K.: J. Appl. Phys. 106(5), 054901 (2009). doi:10.1063/1.3204965

    CrossRef  Google Scholar 

  21. Perdew, J., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77(18), 3865 (1996)

    CrossRef  Google Scholar 

  22. Grimme, S.: Wiley Interdiscip. Rev.: Comput. Mol. Sci. 1(2), 211 (2011). doi:10.1002/wcms.30

    Google Scholar 

  23. Grimme, S., Ehrlich, S., Goerigk, L.: J. Comput. Chem. 32, 1456 (2011). doi:10.1002/jcc

    CrossRef  Google Scholar 

  24. Stegmüller, A., Rosenow, P., Tonner, R.: Phys. Chem. Chem. Phys. 16, 17018 (2014)

    CrossRef  Google Scholar 

  25. Mattsson, A.E., Schultz, P.A., Desjarlais, M.P., Mattsson, T.R., Leung, K.: Model. Simul. Mater. Sci. Eng. 13(1), R1 (2005). doi:10.1088/0965-0393/13/1/R01

    CrossRef  Google Scholar 

  26. Krukowski, S., Kempisty, P., Strak, P.: Cryst. Res. Technol. 44(10), 1038 (2009). doi:10.1002/crat.200900510

    CrossRef  Google Scholar 

  27. Hashemifar, S., Kratzer, P., Scheffler, M.: Phys. Rev. B 82(21), 1 (2010). doi:10.1103/PhysRevB.82.214417

    CrossRef  Google Scholar 

  28. Blöchl, P.: Phys. Rev. B 50(24), 17953 (1994)

    CrossRef  Google Scholar 

  29. Kresse, G., Joubert, D.: Phys. Rev. B 59(3), 11 (1999)

    CrossRef  Google Scholar 

  30. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1996)

    Google Scholar 

  31. Reuter, K.: First-Principles Kinetic Monte Carlo Simulations for Heterogeneous Catalysis: Concepts, Status, and Frontiers. In: Deutschmann, O. (ed.) Modeling Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System, Chap. 3, p. 71ff. Wiley-VCH, Weinberg (2009)

    Google Scholar 

  32. Stampfl, C.: Catal. Today 105(1), 17 (2005). doi:10.1016/j.cattod.2005.04.015

    CrossRef  Google Scholar 

  33. Reuter, K., Frenkel, D., Scheffler, M.: Phys. Rev. Lett. 93(11), 1 (2004). doi:10.1103/PhysRevLett.93.116105

    CrossRef  Google Scholar 

  34. Fritsch, J., Pavone, P.: Surf. Sci. 344(1–2), 159 (1995). doi:10.1016/0039-6028(95)00802-0

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the collaborative research training group (Graduiertenkolleg, DFG) 1782 “Functionalization of Semiconductors” as well as the Beilstein Institut, Frankfurt am Main, for financial and further support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Tonner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Stegmüller, A., Tonner, R. (2015). GaP/Si: Studying Semiconductor Growth Characteristics with Realistic Quantum-Chemical Models. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘14. Springer, Cham. https://doi.org/10.1007/978-3-319-10810-0_15

Download citation