Abstract
The understanding of microscopic processes and properties is crucial for the development and efficient production of inorganic III/V semiconductor materials. Those materials are grown in chemical vapour deposition procedures where elementary steps have not yet been thoroughly understood. Ab initio calculations are capable to investigate those atomic and electronic properties. Modern implementations of Density Functional Theory were applied to study layered bulk structures, periodic surface properties and adatom transport on Si(001) and GaP-Si(001) materials. By increasing cell sizes and number of atoms to scales that only supercomputing facilities can handle, a realistic chemical environment can be modeled with increased structural degrees of freedom. Bulk supercells were constructed in order to model realistic interfaces between two thin films in the nanometer scale. Supercell models in slab geometry were set up and converged with respect to the volume of vacuum and number of relaxed atoms for an accurate description of slab surfaces. These studies enable a direct comparison to experimental studies on these materials.
Keywords
- Density Functional Theory
- Surface Reconstruction
- Vacuum Region
- Hessian Matrice
- Kinetic Monte Carlo Simulation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options










Notes
- 1.
Accurate energy convergence criteria (10−6 eV), kinetic energy cutoff for the basis set at 400 eV, 32 k-points, Gaussian smearing (σ = 0. 05).
- 2.
Energy converged to 10−7 eV and forces to 10−4 eV/\(\, \mathring{A}\) at a kinetic energy cutoff of 400 eV with Gaussian-type smearing (σ = 0. 05).
- 3.
The H atoms were positioned in accordance to silane’s, SiH 4, molecular geometry and relaxed in a preparational calculation.
- 4.
Analytical Hessian matrices of the adatoms at Min and TS were computed to identify first order saddle points indicating the hopping transition state with the imaginary mode indicating the direction of translation.
References
Jandieri, K., Kunert, B., Liebich, S., Zimprich, M., Volz, K., Stolz, W., Gebhard, F., Baranovski, S.D., Koukourakis, N., Gerhardt, N.C., Hofmann, M.R.: Phys. Rev. B 87(3), 035303 (2013). doi:10.1103/PhysRevB.87.035303
Lange, C., Chatterjee, S., Kunert, B., Volz, K., Stolz, W., Rühle, W.W., Gerhardt, N.C., Hofmann, M.R.: Gain characteristics and lasing of Ga(NAsP) multi-quantum well structures. Phys. Status Solidi (C) 6(2), 576 (2009). doi:10.1002/pssc.200880360
Kunert, B., Volz, K., Koch, J., Stolz, W.: Appl. Phys. Lett. 88(18), 182108 (2006). doi:10.1063/1.2200758
Kunert, B., Volz, K., Stolz, W.: Phys. Status Solidi (B) 244(8), 2730 (2007). doi:10.1002/pssb.200675609
Liebich, S., Zimprich, M., Beyer, A., Lange, C., Franzbach, D.J., Chatterjee, S., Hossain, N., Sweeney, S.J., Volz, K., Kunert, B., Stolz, W.: Appl. Phys. Lett. 99(7), 071109 (2011). doi:10.1063/1.3624927
Németh, I., Kunert, B., Stolz, W., Volz, K.: J. Cryst. Growth 310(7–9), 1595 (2008). doi:10.1016/j.jcrysgro.2007.11.127
Volz, K., Beyer, A., Witte, W., Ohlmann, J., Németh, I., Kunert, B., Stolz, W.: J. Cryst. Growth 315(1), 37 (2011). doi:10.1016/j.jcrysgro.2010.10.036
Liang, D., Bowers, J.E.: Nat. Photonics 4(8), 511 (2010). doi:10.1038/nphoton.2010.167
Dürr, M., Biedermann, A., Hu, Z., Höfer, U., Heinz, T.F.: Science 296(5574), 1838 (2002). doi:10.1126/science.1070859
Kunert, B., Zinnkann, S., Volz, K., Stolz, W.: J. Cryst. Growth 310(23), 4776 (2008). doi:10.1016/j.jcrysgro.2008.07.097
Beyer, A., Ohlmann, J., Liebich, S., Heim, H., Witte, G., Stolz, W., Volz, K.: J. Appl. Phys. 111(8), 083534 (2012). doi:10.1063/1.4706573
Saxler, A., Walker, D., Kung, P., Zhang, X., Razeghi, M., Solomon, J., Mitchel, W.C., Vydyanath, H.R.: Appl. Phys. Lett. 71(22), 3272 (1997). doi:10.1063/1.120310
Fukuda, Y., Kobayashi, T., Mochizuki, S.: Appl. Surf. Sci. 176, 218 (2001)
Hohenberg, P., Kohn, W.: Phys. Rev. 136(3B), B864 (1964)
Kohn, W., Sham, L.J., Others: Phys. Rev. 140(4A), A1133 (1965)
Kresse, G., Furthmüller, J.: Phys. Rev. B Condens. Matter 54(16), 11169 (1996)
Kresse, G., Furthmüller, J.: Comput. Mater. Sci. 6(15) p. 15 (1996)
Schmidt, W.G., Bernholc, J., Bechstedt, F.: Appl. Surf. Sci. 166, 179 (2000)
Hafner, J.: J. Comput. Chem. 29(13), 2044 (2008). doi:10.1002/jcc
Kempisty, P., Krukowski, S., Strak, P., Sakowski, K.: J. Appl. Phys. 106(5), 054901 (2009). doi:10.1063/1.3204965
Perdew, J., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77(18), 3865 (1996)
Grimme, S.: Wiley Interdiscip. Rev.: Comput. Mol. Sci. 1(2), 211 (2011). doi:10.1002/wcms.30
Grimme, S., Ehrlich, S., Goerigk, L.: J. Comput. Chem. 32, 1456 (2011). doi:10.1002/jcc
Stegmüller, A., Rosenow, P., Tonner, R.: Phys. Chem. Chem. Phys. 16, 17018 (2014)
Mattsson, A.E., Schultz, P.A., Desjarlais, M.P., Mattsson, T.R., Leung, K.: Model. Simul. Mater. Sci. Eng. 13(1), R1 (2005). doi:10.1088/0965-0393/13/1/R01
Krukowski, S., Kempisty, P., Strak, P.: Cryst. Res. Technol. 44(10), 1038 (2009). doi:10.1002/crat.200900510
Hashemifar, S., Kratzer, P., Scheffler, M.: Phys. Rev. B 82(21), 1 (2010). doi:10.1103/PhysRevB.82.214417
Blöchl, P.: Phys. Rev. B 50(24), 17953 (1994)
Kresse, G., Joubert, D.: Phys. Rev. B 59(3), 11 (1999)
Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1996)
Reuter, K.: First-Principles Kinetic Monte Carlo Simulations for Heterogeneous Catalysis: Concepts, Status, and Frontiers. In: Deutschmann, O. (ed.) Modeling Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System, Chap. 3, p. 71ff. Wiley-VCH, Weinberg (2009)
Stampfl, C.: Catal. Today 105(1), 17 (2005). doi:10.1016/j.cattod.2005.04.015
Reuter, K., Frenkel, D., Scheffler, M.: Phys. Rev. Lett. 93(11), 1 (2004). doi:10.1103/PhysRevLett.93.116105
Fritsch, J., Pavone, P.: Surf. Sci. 344(1–2), 159 (1995). doi:10.1016/0039-6028(95)00802-0
Acknowledgements
The authors acknowledge the collaborative research training group (Graduiertenkolleg, DFG) 1782 “Functionalization of Semiconductors” as well as the Beilstein Institut, Frankfurt am Main, for financial and further support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Stegmüller, A., Tonner, R. (2015). GaP/Si: Studying Semiconductor Growth Characteristics with Realistic Quantum-Chemical Models. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘14. Springer, Cham. https://doi.org/10.1007/978-3-319-10810-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-10810-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10809-4
Online ISBN: 978-3-319-10810-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)