Skip to main content

Consensus Documents

  • Chapter
  • First Online:
Cardiovascular OCT Imaging

Abstract

Optical coherence tomography is a novel technique capable of studying coronary plaques and stented segments with superb resolution. Two consensus documents focused on the clinical applications of OCT for baseline or post-intervention assessment have been released. As the first goal of this chapter, we summarized the conclusion reached by the consensus documents, updating the statements that were made at that time, with new concepts.

The assessment of both atherosclerotic plaque and stent deployment using OCT, and the study of vessel healing require an extensive knowledge of the pertinent definitions. In all three published consensus documents, the authors tried to provide a complete list of definitions needed for conducting appropriate OCT based plaque and stent analyses.

However, researchers still continue to use different definitions especially in cases of plaque erosion and intra-stent thrombus. We first addressed the role of OCT in assessing coronary plaque morphology and vulnerability, then we focused on OCT guidance of coronary interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang IK, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31:401–15 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  Google Scholar 

  2. Imola F, Mallus MT, Ramazzotti V, Manzoli A, Pappalardo A, Di Giorgio A, et al. Safety and feasibility of frequency domain optical coherence tomography to guide decision making in percutaneous coronary intervention. EuroIntervention. 2010;6:575–81.

    Article  PubMed  Google Scholar 

  3. Ozaki Y, Kitabata H, Tsujioka H, Hosokawa S, Kashiwagi M, Ishibashi K, et al. Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography. Circ J. 2012;76:922–7 [Comparative Study].

    Article  PubMed  Google Scholar 

  4. Okamura T, Onuma Y, Garcia-Garcia HM, van Geuns RJ, Wykrzykowska JJ, Schultz C, et al. First-in-man evaluation of intravascular optical frequency domain imaging (OFDI) of Terumo: a comparison with intravascular ultrasound and quantitative coronary angiography. EuroIntervention. 2011;6:1037–45 [Comparative Study Randomized Controlled Trial].

    Article  PubMed  Google Scholar 

  5. Prati F, Guagliumi G, Mintz GS, Costa M, Regar E, Akasaka T, et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur Heart J. 2012;33:2513–20.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Takarada S, Imanishi T, Liu Y, Ikejima H, Tsujioka H, Kuroi A, et al. Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv. 2010;75:202–6 [Comparative Study Evaluation Studies].

    Article  PubMed  Google Scholar 

  7. Barlis P, Gonzalo N, Di Mario C, Prati F, Buellesfeld L, Rieber J, et al. A multicentre evaluation of the safety of intracoronary optical coherence tomography. EuroIntervention. 2009;5:90–5 [Evaluation Studies Multicenter Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  8. Fedele S, Biondi-Zoccai G, Kwiatkowski P, Di Vito L, Occhipinti M, Cremonesi A, et al. Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study). Am J Cardiol. 2012;110:1106–12.

    Article  PubMed  Google Scholar 

  9. Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv. 2009;2:1035–46 [Review].

    Article  PubMed Central  PubMed  Google Scholar 

  10. Capodanno D, Prati F, Pawlowsky T, Cera M, La Manna A, Albertucci M, et al. Comparison of optical coherence tomography and intravascular ultrasound for the assessment of in-stent tissue coverage after stent implantation. EuroIntervention. 2009;5:538–43 [Comparative Study].

    Article  PubMed  Google Scholar 

  11. Tanigawa J, Barlis P, Di Mario C. Heavily calcified coronary lesions preclude strut apposition despite high pressure balloon dilatation and rotational atherectomy: in-vivo demonstration with optical coherence tomography. Circ J. 2008;72:157–60 [Case Reports Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  12. Tenaglia AN, Buller CE, Kisslo KB, Phillips HR, Stack RS, Davidson CJ. Intracoronary ultrasound predictors of adverse outcomes after coronary artery interventions. J Am Coll Cardiol. 1992;20:1385–90 [Comparative Study].

    Article  CAS  PubMed  Google Scholar 

  13. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39:604–9 [Clinical Trial Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  14. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478–92.

    Article  CAS  PubMed  Google Scholar 

  15. Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62(19):1748–58.

    Article  PubMed  Google Scholar 

  16. Niccoli G, Giubilato S, Di Vito L, Leo A, Cosentino N, Pitocco D, et al. Severity of coronary atherosclerosis in patients with a first acute coronary event: a diabetes paradox. Eur Heart J. 2012;34(10):729–41.

    Article  PubMed  Google Scholar 

  17. Tanaka A, Imanishi T, Kitabata H, Kubo T, Takarada S, Tanimoto T, et al. Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. Eur Heart J. 2009;30:1348–55.

    Article  PubMed  Google Scholar 

  18. Imola F, Occhipinti M, Biondi-Zoccai G, Di Vito L, Ramazzotti V, Manzoli A, et al. Association between proximal stent edge positioning on atherosclerotic plaques containing lipid pools and postprocedural myocardial infarction (from the CLI-POOL Study). Am J Cardiol. 2013;111:526–31.

    Article  PubMed  Google Scholar 

  19. Koo BK, Yang HM, Doh JH, Choe H, Lee SY, Yoon CH, et al. Optimal intravascular ultrasound criteria and their accuracy for defining the functional significance of intermediate coronary stenoses of different locations. JACC Cardiovasc Interv. 2011;4:803–11 [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  20. Capodanno D, Prati F, Pawlowsky T, Ramazzotti V, Albertucci J, La Manna A, et al. ClearWayRX system to reduce intracoronary thrombus in patients with acute coronary syndromes according to optical coherence tomography after abciximab intracoronary local infusion trial (COCTAIL): study rationale and design. J Cardiovasc Med (Hagerstown). 2010;11:130–6 [Randomized Controlled Trial].

    Article  Google Scholar 

  21. Prati F, Capodanno D, Pawlowski T, Ramazzotti V, Albertucci M, La Manna A, et al. Local delivery versus intracoronary infusion of abciximab in patients with acute coronary syndromes. JACC Cardiovasc Interv. 2010;3:928–34 [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  22. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35 [Clinical Trial Multicenter Study Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  23. Takano M, Yamamoto M, Inami S, Murakami D, Ohba T, Seino Y, et al. Appearance of lipid-laden intima and neovascularization after implantation of bare-metal stents extended late-phase observation by intracoronary optical coherence tomography. J Am Coll Cardiol. 2009;55:26–32.

    Article  PubMed  Google Scholar 

  24. Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107:113–9 [Evaluation Studies Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  25. Gabriele A, Marco V, Gatto L, Paoletti G, Di Vito L, Castriota F, et al. Reproducibility of the Carpet View system: a novel technical solution for display and off line analysis of OCT images. Int J Cardiovasc Imaging. 2014;30(7):1225–33.

    Google Scholar 

  26. Sawada T, Shite J, Garcia-Garcia HM, Shinke T, Watanabe S, Otake H, et al. Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J. 2008;29:1136–46 [Evaluation Studies Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  27. Manfrini O, Mont E, Leone O, Arbustini E, Eusebi V, Virmani R, et al. Sources of error and interpretation of plaque morphology by optical coherence tomography. Am J Cardiol. 2006;98:156–9 [Comparative Study In Vitro].

    Article  PubMed  Google Scholar 

  28. Gonzalo N, Serruys PW, Okamura T, Shen ZJ, Garcia-Garcia HM, Onuma Y, et al. Relation between plaque type and dissections at the edges after stent implantation: an optical coherence tomography study. Int J Cardiol. 2011;150:151–5 [Comparative Study].

    Article  PubMed  Google Scholar 

  29. Porto I, Di Vito L, Burzotta F, Niccoli G, Trani C, Leone AM, et al. Predictors of periprocedural (type IVa) myocardial infarction, as assessed by frequency-domain optical coherence tomography. Circ Cardiovasc Interv. 2012;5(89–96):S1–6 [Research Support, Non-U.S. Gov’t].

    Google Scholar 

  30. Roy P, Steinberg DH, Sushinsky SJ, Okabe T, Pinto Slottow TL, Kaneshige K, et al. The potential clinical utility of intravascular ultrasound guidance in patients undergoing percutaneous coronary intervention with drug-eluting stents. Eur Heart J. 2008;29:1851–7 [Evaluation Studies].

    Article  CAS  PubMed  Google Scholar 

  31. Sonoda S, Morino Y, Ako J, Terashima M, Hassan AH, Bonneau HN, et al. Impact of final stent dimensions on long-term results following sirolimus-eluting stent implantation: serial intravascular ultrasound analysis from the sirius trial. J Am Coll Cardiol. 2004;43:1959–63 [Evaluation Studies].

    Article  PubMed  Google Scholar 

  32. Witzenbichler B, Maehara A, Weisz G, Neumann FJ, Rinaldi MJ, Metzger DC, et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents: the assessment of dual antiplatelet therapy with drug-eluting stents (ADAPT-DES) study. Circulation. 2014;129:463–70 [Clinical Trial Comparative Study Multicenter Study Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  33. Park SJ, Kim YH, Park DW, Lee SW, Kim WJ, Suh J, et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ Cardiovasc Interv. 2009;2:167–77 [Comparative Study Multicenter Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  34. Prati F, Di Vito L, Biondi-Zoccai G, Occhipinti M, La Manna A, Tamburino C, et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lottacontrol’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention. 2012;8:823–9 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  35. Di Giorgio A, Capodanno D, Ramazzotti V, Imola F, Mallus MT, Stazi F, et al. Optical coherence tomography guided in-stent thrombus removal in patients with acute coronary syndromes. Int J Cardiovasc Imaging. 2013;29:989–96 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  36. de Jaegere P, Mudra H, Figulla H, Almagor Y, Doucet S, Penn I, et al. Intravascular ultrasound-guided optimized stent deployment. Immediate and 6 months clinical and angiographic results from the Multicenter Ultrasound Stenting in Coronaries Study (MUSIC Study). Eur Heart J. 1998;19:1214–23 [Multicenter Study].

    Article  PubMed  Google Scholar 

  37. L Gatto, A Chisari, A La Manna, F Burzotta, L Di Vito, MT Tallus, A Cremonesi, A Pappalardo, M Albertucci, F Prati. Comparative incidence of optical coherence tomography features indicative of uncorrected stent deployment in patients with and without major adverse cardiac events in the OCT guided arm of the CLI-OPCI study. Journal of the American College of Cardiology, 2013/10/29; Vol: 62; N: 18_S1; Pagine: B167–B167.

    Google Scholar 

  38. Parodi G, La Manna A, Di Vito L, Valgimigli M, Fineschi M, Bellandi B, et al. Stent-related defects in patients presenting with stent thrombosis: differences at optical coherence tomography between subacute and late/very late thrombosis in the Mechanism of Stent Thrombosis (MOST) study. EuroIntervention. 2013;9:936–44 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  39. Guagliumi G, Sirbu V, Musumeci G, Gerber R, Biondi-Zoccai G, Ikejima H, et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc Interv. 2012;5:12–20 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  40. Prati F, Zimarino M, Stabile E, Pizzicannella G, Fouad T, Rabozzi R, et al. Does optical coherence tomography identify arterial healing after stenting? An in vivo comparison with histology, in a rabbit carotid model. Heart. 2008;94:217–21 [Comparative Study].

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki Y, Ikeno F, Koizumi T, Tio F, Yeung AC, Yock PG, et al. In vivo comparison between optical coherence tomography and intravascular ultrasound for detecting small degrees of in-stent neointima after stent implantation. JACC Cardiovasc Interv. 2008;1:168–73 [Comparative Study Evaluation Studies].

    Article  PubMed  Google Scholar 

  42. Guagliumi G, Costa MA, Sirbu V, Musumeci G, Bezerra HG, Suzuki N, et al. Strut coverage and late malapposition with paclitaxel-eluting stents compared with bare metal stents in acute myocardial infarction: optical coherence tomography substudy of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) Trial. Circulation. 2011;123:274–81 [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  43. Matsumoto D, Shite J, Shinke T, Otake H, Tanino Y, Ogasawara D, et al. Neointimal coverage of sirolimus-eluting stents at 6-month follow-up: evaluated by optical coherence tomography. Eur Heart J. 2007;28:961–7.

    Article  CAS  PubMed  Google Scholar 

  44. Takano M, Murakami D, Yamamoto M, Kurihara O, Murai K, Inami T, et al. Six-month follow-up evaluation for everolimus-eluting stents by intracoronary optical coherence tomography: comparison with paclitaxel-eluting stents. Int J Cardiol. 2011;166(1):181–6.

    Article  PubMed  Google Scholar 

  45. Ozaki Y, Okumura M, Ismail TF, Naruse H, Hattori K, Kan S, et al. The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study. Eur Heart J. 2010;31:1470–6 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  46. Otake H, Shite J, Ako J, Shinke T, Tanino Y, Ogasawara D, et al. Local determinants of thrombus formation following sirolimus-eluting stent implantation assessed by optical coherence tomography. JACC Cardiovasc Interv. 2009;2:459–66.

    Article  PubMed  Google Scholar 

  47. Gonzalo N, Barlis P, Serruys PW, Garcia-Garcia HM, Onuma Y, Ligthart J, et al. Incomplete stent apposition and delayed tissue coverage are more frequent in drug-eluting stents implanted during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction than in drug-eluting stents implanted for stable/unstable angina: insights from optical coherence tomography. JACC Cardiovasc Interv. 2009;2:445–52 [Comparative Study].

    Article  PubMed  Google Scholar 

  48. Miyazaki S, Hiasa Y, Takahashi T, Yano Y, Minami T, Murakami N, et al. In vivo optical coherence tomography of very late drug-eluting stent thrombosis compared with late in-stent restenosis. Circ J. 2012;76:390–8 [Comparative Study].

    Article  PubMed  Google Scholar 

  49. Gonzalo N, Serruys PW, Okamura T, van Beusekom HM, Garcia-Garcia HM, van Soest G, et al. Optical coherence tomography patterns of stent restenosis. Am Heart J. 2009;158:284–93.

    Article  PubMed  Google Scholar 

  50. Kwon SW, Kim BK, Kim TH, Kim JS, Ko YG, Choi D, et al. Qualitative assessment of neointimal tissue after drug-eluting stent implantation: comparison between follow-up optical coherence tomography and intravascular ultrasound. Am Heart J. 2011;161:367–72.

    Article  PubMed  Google Scholar 

  51. Lee SJ, Kim BK, Kim JS, Ko YG, Choi D, Jang Y, et al. Evaluation of neointimal morphology of lesions with or without in-stent restenosis: an optical coherence tomography study. Clin Cardiol. 2011;34:633–9.

    Article  PubMed  Google Scholar 

  52. Fujii K, Kawasaki D, Masutani M, Okumura T, Akagami T, Sakoda T, et al. OCT assessment of thin-cap fibroatheroma distribution in native coronary arteries. JACC Cardiovasc Imaging. 2010;3:168–75.

    Article  PubMed  Google Scholar 

  53. Kato K, Yonetsu T, Kim SJ, Xing L, Lee H, McNulty I, et al. Non-culprit plaques in patients with acute coronary syndromes (ACS) have more vulnerable features compared to those with non-ACS: a 3-vessel optical coherence tomography study. Circ Cardiovasc Imaging. 2012;5(4):433–40.

    Article  PubMed  Google Scholar 

  54. Ino Y, Kubo T, Tanaka A, Kuroi A, Tsujioka H, Ikejima H, et al. Difference of culprit lesion morphologies between ST-segment elevation myocardial infarction and non-ST-segment elevation acute coronary syndrome an optical coherence tomography study. JACC Cardiovasc Interv. 2011;4:76–82.

    Article  PubMed  Google Scholar 

  55. Lee T, Kakuta T, Yonetsu T, Takahashi K, Yamamoto G, Iesaka Y, et al. Assessment of echo-attenuated plaque by optical coherence tomography and its impact on post-procedural creatine kinase-myocardial band elevation in elective stent implantation. JACC Cardiovasc Interv. 2011;4:483–91.

    Article  PubMed  Google Scholar 

  56. Yonetsu T, Kakuta T, Lee T, Takahashi K, Kawaguchi N, Yamamoto G, et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J. 2011;32:1251–9.

    Article  PubMed  Google Scholar 

  57. Feng T, Yundai C, Lian C, Zhijun S, Changfu L, Jun G, et al. Assessment of coronary plaque characteristics by optical coherence tomography in patients with diabetes mellitus complicated with unstable angina pectoris. Atherosclerosis. 2010;213:482–5.

    Article  PubMed  Google Scholar 

  58. Yonetsu T, Kakuta T, Lee T, Takahashi K, Yamamoto G, Iesaka Y, et al. Impact of plaque morphology on creatine kinase-MB elevation in patients with elective stent implantation. Int J Cardiol. 2011;146:80–5.

    Article  PubMed  Google Scholar 

  59. Tian J, Hou J, Xing L, Kim SJ, Yonetsu T, Kato K, et al. Does neovascularization predict response to statin therapy? Optical coherence tomography study. Int J Cardiol. 2012;158:469–70.

    Article  PubMed  Google Scholar 

  60. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111:1551–5 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed Central  PubMed  Google Scholar 

  61. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–8.

    Article  CAS  PubMed  Google Scholar 

  62. Mizukoshi M, Imanishi T, Tanaka A, Kubo T, Liu Y, Takarada S, et al. Clinical classification and plaque morphology determined by optical coherence tomography in unstable angina pectoris. Am J Cardiol. 2010;106:323–8.

    Article  PubMed  Google Scholar 

  63. Karanasos A, Ligthart JM, Witberg KT, Regar E. Calcified nodules: an underrated mechanism of coronary thrombosis? JACC Cardiovasc Imaging. 2012;5:1071–2 [Letter Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  64. Miyoshi N, Shite J, Shinke T, Otake H, Tanino Y, Ogasawara D, et al. Comparison by optical coherence tomography of paclitaxel-eluting stents with sirolimus-eluting stents implanted in one coronary artery in one procedure. - 6-month follow-up. Circ J. 2010;74:903–8.

    Article  PubMed  Google Scholar 

  65. Ishigami K, Uemura S, Morikawa Y, Soeda T, Okayama S, Nishida T, et al. Long-term follow-up of neointimal coverage of sirolimus-eluting stents–evaluation with optical coherence tomography. Circ J. 2009;73:2300–7.

    Article  PubMed  Google Scholar 

  66. Gutierrez-Chico JL, Wykrzykowska J, Nuesch E, van Geuns RJ, Koch KT, Koolen JJ, et al. Vascular tissue reaction to acute malapposition in human coronary arteries: sequential assessment with optical coherence tomography. Circ Cardiovasc Interv. 2012;5(1):20–9.

    Article  PubMed  Google Scholar 

  67. Tanigawa J, Barlis P, Di Mario C. Intravascular optical coherence tomography: optimisation of image acquisition and quantitative assessment of stent strut apposition. EuroIntervention. 2007;3:128–36.

    PubMed  Google Scholar 

  68. Mehanna EA, Attizzani GF, Kyono H, Hake M, Bezerra HG. Assessment of coronary stent by optical coherence tomography, methodology and definitions. Int J Cardiovasc Imaging. 2011;27:259–69.

    Article  PubMed  Google Scholar 

  69. Kawamori H, Shite J, Shinke T, Otake H, Sawada T, Kato H, et al. The ability of optical coherence tomography to monitor percutaneous coronary intervention: detailed comparison with intravascular ultrasound. J Invasive Cardiol. 2010;22:541–5.

    PubMed  Google Scholar 

  70. Lee SW, Park SW, Kim YH, Yun SC, Park DW, Lee CW, et al. A randomized comparison of sirolimus- versus paclitaxel-eluting stent implantation in patients with diabetes mellitus 4-year clinical outcomes of DES-DIABETES (drug-eluting stent in patients with DIABETES mellitus) trial. JACC Cardiovasc Interv. 2011;4:310–6.

    Article  PubMed  Google Scholar 

  71. Gonzalo N, Serruys PW, Okamura T, Shen ZJ, Onuma Y, Garcia-Garcia HM, et al. Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach. Heart. 2009;95:1913–9.

    Article  CAS  PubMed  Google Scholar 

  72. Kume T, Okura H, Miyamoto Y, Yamada R, Saito K, Tamada T, et al. Natural history of stent edge dissection, tissue protrusion and incomplete stent apposition detectable only on optical coherence tomography after stent implantation. Circ J. 2012;76(3):698–703.

    Article  PubMed  Google Scholar 

  73. Choi SY, Witzenbichler B, Maehara A, Lansky AJ, Guagliumi G, Brodie B, et al. Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) substudy. Circ Cardiovasc Interv. 2011;4:239–47 [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Prati MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Di Vito, L., Marco, V., Albertucci, M., Prati, F. (2015). Consensus Documents. In: Jang, IK. (eds) Cardiovascular OCT Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-10801-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10801-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10800-1

  • Online ISBN: 978-3-319-10801-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics