Skip to main content

Bioabsorbable Stent

  • Chapter
  • First Online:
Cardiovascular OCT Imaging

Abstract

Fully bioresorbable scaffolds are a promising approach to the treatment of coronary artery disease. The absence of residual foreign material and subsequent restoration of endothelial coverage may address the safety concerns associated with metallic drug-eluting stents such as permanent caging of the artery with or without malapposition, jailing of side branches and late stent thrombosis.

Currently, numerous bioresorbable scaffolds – the majority composed of bioresorbable polymers, and some of absorbable metals – are being developed. Coronary angiography is limited in its ability to visualize the scaffold, because of its low spatial resolution and the radiolucence of the scaffold’s polymer backbone.

Angiography alone cannot diagnose scaffold expansion, its interaction with the vessel wall or scaffold degradation over time.

Intracoronary imaging techniques such as intravascular ultrasound (IVUS) or optical coherence tomography (OCT) can overcome these limitations and allow for the evaluation of coronary arteries and scaffolds in great detail. OCT is particularly well suited for the assessment of atherosclerotic plaque, the scaffold and tissue coverage, and allows for detailed evaluation on the individual strut level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serruys PW, Garcia-Garcia HM, Onuma Y. From metallic cages to transient bioresorbable scaffolds: change in paradigm of coronary revascularization in the upcoming decade? Eur Heart J. 2012;33(1):16–25b.

    Article  PubMed  Google Scholar 

  2. Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, et al. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation. 2000;102(4):399–404.

    Article  CAS  PubMed  Google Scholar 

  3. Pollman MJ. Engineering a bioresorbable stent: REVA programme update. EuroIntervention. 2009;5(Suppl F):F54–7.

    Article  PubMed  Google Scholar 

  4. Ormiston JA, Serruys PW, Regar E, Dudek D, Thuesen L, Webster MW, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet. 2008;371(9616):899–907.

    Article  CAS  PubMed  Google Scholar 

  5. Verheye S, Ormiston JA, Stewart J, Webster M, Sanidas E, Costa R, et al. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC Cardiovasc Interv. 2014;7(1):89–99.

    Article  PubMed  Google Scholar 

  6. Gutierrez-Chico JL, Serruys PW, Girasis C, Garg S, Onuma Y, Brugaletta S, et al. Quantitative multi-modality imaging analysis of a fully bioresorbable stent: a head-to-head comparison between QCA, IVUS and OCT. Int J Cardiovasc Imaging. 2012;28(3):467–78.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Tsuchida K, van der Giessen WJ, Patterson M, Tanimoto S, Garcia-Garcia HM, Regar E, et al. In vivo validation of a novel three-dimensional quantitative coronary angiography system (CardiOp-B): comparison with a conventional two-dimensional system (CAAS II) and with special reference to optical coherence tomography. EuroIntervention. 2007;3(1):100–8.

    PubMed  Google Scholar 

  8. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  PubMed  Google Scholar 

  9. Sarno G, Bruining N, Onuma Y, Garg S, Brugaletta S, De Winter S, et al. Morphological and functional evaluation of the bioresorption of the bioresorbable everolimus-eluting vascular scaffold using IVUS, echogenicity and vasomotion testing at two year follow-up: a patient level insight into the ABSORB A clinical trial. Int J Cardiovasc Imaging. 2012;28(1):51–8.

    Article  PubMed  Google Scholar 

  10. Van Ditzhuijzen NS, Van Beusekom HM, Ligthart JM, Regar E. Invasive imaging of the coronary atherosclerotic plaque. Minerva Cardioangiol. 2012;60(3):305–29 [Review].

    PubMed  Google Scholar 

  11. Regar E, van Leeuwen AMGJ, Serruys PW. Optical coherence tomography in cardiovascular research. London: Informa Healthcare; 2007.

    Google Scholar 

  12. Gonzalo N, Serruys PW, Garcia-Garcia HM, van Soest G, Okamura T, Ligthart J, et al. Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries. Rev Esp Cardiol. 2009;62(6):615–24.

    Article  PubMed  Google Scholar 

  13. van Ditzhuijzen NS, Karanasos A, Bruining N, van den Heuvel M, Sorop O, Ligthart J, et al. The impact of Fourier-Domain optical coherence tomography catheter induced motion artefacts on quantitative measurements of a PLLA-based bioresorbable scaffold. Int J Cardiovasc Imaging. 2014;16.

    Google Scholar 

  14. Jamil Z, Tearney G, Bruining N, Sihan K, van Soest G, Ligthart J, et al. Interstudy reproducibility of the second generation, Fourier domain optical coherence tomography in patients with coronary artery disease and comparison with intravascular ultrasound: a study applying automated contour detection. Int J Cardiovasc Imaging. 2013;29(1):39–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Okamura T, Onuma Y, Garcia-Garcia HM, van Geuns RJ, Wykrzykowska JJ, Schultz C, et al. First-in-man evaluation of intravascular optical frequency domain imaging (OFDI) of Terumo: a comparison with intravascular ultrasound and quantitative coronary angiography. EuroIntervention. 2011;6(9):1037–45.

    Article  PubMed  Google Scholar 

  16. Gonzalo N, Tearney GJ, Serruys PW, van Soest G, Okamura T, Garcia-Garcia HM, et al. Second-generation optical coherence tomography in clinical practice. High-speed data acquisition is highly reproducible in patients undergoing percutaneous coronary intervention. Rev Esp Cardiol. 2010;63(8):893–903.

    Article  PubMed  Google Scholar 

  17. Okamura T, Gonzalo N, Gutierrez-Chico JL, Serruys PW, Bruining N, de Winter S, et al. Reproducibility of coronary Fourier domain optical coherence tomography: quantitative analysis of in vivo stented coronary arteries using three different software packages. EuroIntervention. 2010;6(3):371–9.

    Article  PubMed  Google Scholar 

  18. Zahnd G, Karanasos A, Van Soest G, Regar E, Niessen WJ, Gijsen FJ, et al. Semi-automated quantification of fibrous cap thickness in intra- coronary optical coherence tomography. International Conference on Information Processing in Computer-Assisted Interventions (IPCAI), 2014.

    Google Scholar 

  19. Takarada S, Imanishi T, Liu Y, Ikejima H, Tsujioka H, Kuroi A, et al. Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv. 2010;75(2):202–6.

    Article  PubMed  Google Scholar 

  20. Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang IK, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31(4):401–15.

    Article  PubMed  Google Scholar 

  21. Prati F, Guagliumi G, Mintz GS, Costa M, Regar E, Akasaka T, et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur Heart J. 2012;33(20):2513–20.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Tanimoto S, Bruining N, van Domburg RT, Rotger D, Radeva P, Ligthart JM, et al. Late stent recoil of the bioabsorbable everolimus-eluting coronary stent and its relationship with plaque morphology. J Am Coll Cardiol. 2008;52(20):1616–20.

    Article  CAS  PubMed  Google Scholar 

  23. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72.

    Article  PubMed  Google Scholar 

  24. Foin N, Gutierrez-Chico JL, Nakatani S, Torii R, Bourantas CV, Sen S, et al. Incomplete stent apposition causes high shear flow disturbances and delay in neointimal coverage as a function of strut to wall detachment distance: implications for the management of incomplete stent apposision. Circ Cardiovasc Interv. 2014;7(2):180–9.

    Article  PubMed  Google Scholar 

  25. Karanasos A, van Geuns RJ, Zijlstra F, Regar E. Very late bioresorbable scaffold thrombosis after discontinuation of dual antiplatelet therapy. Eur Heart J. 2014;19.

    Google Scholar 

  26. Gomez-Lara J, Diletti R, Brugaletta S, Onuma Y, Farooq V, Thuesen L, et al. Angiographic maximal luminal diameter and appropriate deployment of the everolimus-eluting bioresorbable vascular scaffold as assessed by optical coherence tomography: an ABSORB cohort B trial sub-study. EuroIntervention. 2012;8(2):214–24.

    Article  PubMed  Google Scholar 

  27. Gomez-Lara J, Radu M, Brugaletta S, Farooq V, Diletti R, Onuma Y, et al. Serial analysis of the malapposed and uncovered struts of the new generation of everolimus-eluting bioresorbable scaffold with optical coherence tomography. JACC Cardiovasc Interv. 2011;4(9):992–1001.

    Article  PubMed  Google Scholar 

  28. Sato K, Latib A, Naganuma T, Panoulas VF, Miyazaki T, Colombo A, editors. Impact of calcified plaque for stent struts distribution of the bioabsorbable everolimus-eluting device – optical coherence tomography analysis. Paris: EuroPCR; 2014.

    Google Scholar 

  29. Suzuki Y, Ikeno F, Yeung AC. Drug-eluting stent strut distribution: a comparison between Cypher and Taxus by optical coherence tomography. J Invasive Cardiol. 2006;18(3):111–4.

    PubMed  Google Scholar 

  30. Gomez-Lara J, Brugaletta S, Diletti R, Garg S, Onuma Y, Gogas BD, et al. A comparative assessment by optical coherence tomography of the performance of the first and second generation of the everolimus-eluting bioresorbable vascular scaffolds. Eur Heart J. 2011;32(3):294–304.

    Article  CAS  PubMed  Google Scholar 

  31. Burzotta F, De Vita M, Sgueglia G, Todaro D, Trani C. How to solve difficult side branch access? EuroIntervention. 2010;6(Suppl J):J72–80.

    Article  PubMed  Google Scholar 

  32. Okamura T, Onuma Y, Garcia-Garcia HM, Regar E, Wykrzykowska JJ, Koolen J, et al. 3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification. JACC Cardiovasc Interv. 2010;3(8):836–44.

    Article  PubMed  Google Scholar 

  33. Okamura T, Garg S, Gutierrez-Chico JL, Shin ES, Onuma Y, Garcia-Garcia HM, et al. In vivo evaluation of stent strut distribution patterns in the bioabsorbable everolimus-eluting device: an OCT ad hoc analysis of the revision 1.0 and revision 1.1 stent design in the ABSORB clinical trial. EuroIntervention. 2010;5(8):932–8.

    Article  PubMed  Google Scholar 

  34. Cook S, Wenaweser P, Togni M, Billinger M, Morger C, Seiler C, et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation. 2007;115(18):2426–34.

    Article  CAS  PubMed  Google Scholar 

  35. Park SJ, Kang SJ, Virmani R, Nakano M, Ueda Y. In-stent neoatherosclerosis: a final common pathway of late stent failure. J Am Coll Cardiol. 2012;59(23):2051–7.

    Article  PubMed  Google Scholar 

  36. Gutierrez-Chico JL, Regar E, Nuesch E, Okamura T, Wykrzykowska J, di Mario C, et al. Delayed coverage in malapposed and side-branch struts with respect to well-apposed struts in drug-eluting stents: in vivo assessment with optical coherence tomography. Circulation. 2011;124(5):612–23 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  37. Tanimoto S, Rodriguez-Granillo G, Barlis P, de Winter S, Bruining N, Hamers R, et al. A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection. Catheter Cardiovasc Interv. 2008;72(2):228–35.

    Article  PubMed  Google Scholar 

  38. Gonzalo N, Garcia-Garcia H, Serruys PW, Commissaris K, Bezerra H, Gobbens P, Costa MA, Regar E. Reproducibility of quantitative optical coherence tomography for stent analysis. EuroIntervention. 2009;5(2):224–32.

    Article  PubMed  Google Scholar 

  39. Brugaletta S, Radu MD, Garcia-Garcia HM, Heo JH, Farooq V, Girasis C, et al. Circumferential evaluation of the neointima by optical coherence tomography after ABSORB bioresorbable vascular scaffold implantation: can the scaffold cap the plaque? Atherosclerosis. 2012;221(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  40. Gomez-Lara J, Brugaletta S, Farooq V, Onuma Y, Diletti R, Windecker S, et al. Head-to-head comparison of the neointimal response between metallic and bioresorbable everolimus-eluting scaffolds using optical coherence tomography. JACC Cardiovasc Interv. 2011;4(12):1271–80.

    Article  PubMed  Google Scholar 

  41. Gonzalo N, Serruys PW, Okamura T, van Beusekom HM, Garcia-Garcia HM, van Soest G, et al. Optical coherence tomography patterns of stent restenosis. Am Heart J. 2009;158(2):284–93.

    Article  PubMed  Google Scholar 

  42. Onuma Y, Serruys PW, Perkins LE, Okamura T, Gonzalo N, Garcia-Garcia HM, et al. Intracoronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography images in the ABSORB trial. Circulation. 2010;122(22):2288–300.

    Article  CAS  PubMed  Google Scholar 

  43. Farooq V, Gogas BD, Okamura T, Heo JH, Magro M, Gomez-Lara J, et al. Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application. Eur Heart J. 2013;34(12):875–85.

    Article  PubMed  Google Scholar 

  44. van Geuns RJ, Gogas BD, Farooq V, Regar E, Serruys PW. 3-Dimensional reconstruction of a bifurcation lesion with double wire after implantation of a second generation everolimus-eluting bioresorbable vascular scaffold. Int J Cardiol. 2011;153(2):e43–5.

    Article  PubMed  Google Scholar 

  45. Okamura T, Serruys PW, Regar E. Cardiovascular flashlight. The fate of bioresorbable struts located at a side branch ostium: serial three-dimensional optical coherence tomography assessment. Eur Heart J. 2010;31(17):2179 [Case Reports].

    Article  PubMed  Google Scholar 

  46. Van Ditzhuijzen N, Ligthart J, Bruining N,ER, Van Beusekom HMM. Invasive imaging of bioresorbable coronary scaffolds – a review. Intervent Cardiol Review. 2013;8(1):23–35.

    Article  Google Scholar 

  47. Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 2007;369(9576):1869–75.

    Article  CAS  PubMed  Google Scholar 

  48. Nishio S, Kosuga K, Igaki K, Okada M, Kyo E, Tsuji T, et al. Long-Term (>10 Years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents: Igaki-Tamai stents. Circulation. 2012;125(19):2343–53.

    Article  CAS  PubMed  Google Scholar 

  49. Oberhauser J, Hossainy S, Rapoza R. Design principles and performance of bioresorbable polymeric coronary scaffolds. EuroIntervention. 2009;5(Supplement F):F15–23.

    Article  PubMed  Google Scholar 

  50. Serruys PW, Ormiston JA, Onuma Y, Regar E, Gonzalo N, Garcia-Garcia HM, et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. 2009;373(9667):897–910.

    Article  CAS  PubMed  Google Scholar 

  51. Onuma Y, Serruys PW, Ormiston JA, Regar E, Webster M, Thuesen L, et al. Three-year results of clinical follow-up after a bioresorbable everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB trial. EuroIntervention. 2010;6:447–53.

    Article  PubMed  Google Scholar 

  52. Onuma Y, Dudek D, Thuesen L, Webster M, Nieman K, Garcia-Garcia HM, et al. Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial. JACC Cardiovasc Interv. 2013;6(10):999–1009.

    Article  PubMed  Google Scholar 

  53. Brugaletta S, Heo JH, Garcia-Garcia HM, Farooq V, van Geuns RJ, de Bruyne B, et al. Endothelial-dependent vasomotion in a coronary segment treated by ABSORB everolimus-eluting bioresorbable vascular scaffold system is related to plaque composition at the time of bioresorption of the polymer: indirect finding of vascular reparative therapy? Eur Heart J. 2012;33(11):1325–33.

    Article  CAS  PubMed  Google Scholar 

  54. Karanasos A, Simsek C, Serruys P, Ligthart J, Witberg K, van Geuns RJ, et al. Five-year optical coherence tomography follow-up of an everolimus-eluting bioresorbable vascular scaffold: changing the paradigm of coronary stenting? Circulation. 2012;126(7):e89–91.

    Article  PubMed  Google Scholar 

  55. Garcia-Garcia HM, Schultz C, Duckers E, Regar E, Ligthart J, Serruys PW, et al. Five-year follow-up of the ABSORB bioresorbable everolimus-eluting vascular scaffold system: multimodality imaging assessment. EuroIntervention. 2013;8(10):1126–7 [Case Reports].

    Article  PubMed  Google Scholar 

  56. Simsek C, Karanasos A, Magro M, Garcia-Garcia HM, Onuma Y, Regar E, Boersma E, Serruys P, van Geuns R-J. Long-term invasive follow-up of the everolimus-eluting bioresorbable vascular scaffold: five-year results of multiple invasive imaging modalities. EuroIntervention. 2014; in press.

    Google Scholar 

  57. Serruys PW, Onuma Y, Ormiston JA, de Bruyne B, Regar E, Dudek D, et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation. 2010;122(22):2301–12.

    Article  CAS  PubMed  Google Scholar 

  58. Serruys PW, Onuma Y, Dudek D, Smits PC, Koolen J, Chevalier B, et al. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. J Am Coll Cardiol. 2011;58(15):1578–88.

    Article  CAS  PubMed  Google Scholar 

  59. van Ditzhuijzen NS, Kurata M, Sorop O, van den Heuvel M, van Duin R, Krabbendam-Peters I, et al. Diabetes mellitus does not influence long-term coverage of the everolimus-eluting bioresorbable scaffold. Circulation 2013;128(22) (Supplement S):17519.

    Google Scholar 

  60. Abizaid A, Costa JR, Jr., Bartorelli AL, Whitbourn R, van Geuns RJ, Chevalier B, et al. The ABSORB EXTEND study: preliminary report of the twelve-month clinical outcomes in the first 512 patients enrolled. EuroIntervention. 2014.

    Google Scholar 

  61. Diletti R, Serruys PW, Farooq V, Sudhir K, Dorange C, Miquel-Hebert K, et al. ABSORB II randomized controlled trial: a clinical evaluation to compare the safety, efficacy, and performance of the Absorb everolimus-eluting bioresorbable vascular scaffold system against the XIENCE everolimus-eluting coronary stent system in the treatment of subjects with ischemic heart disease caused by de novo native coronary artery lesions: rationale and study design. Am Heart J. 2012;164(5):654–63 [Comparative Study Multicenter Study Randomized Controlled Trial].

    Article  CAS  PubMed  Google Scholar 

  62. Stone GW, editor. ABSORB III and IV: pivotal clinical trial program. Miami: Transcatheter Cardiovascular Therapeutics; 2012.

    Google Scholar 

  63. Abizaid A, Schofer J, Maeng M, Witzenbichler B, Botelho R, Ormiston JA, Costa RA, Costa Jr JD, Chamie D, Castro JP, Abizaid A, John Y, Bhat V, Morrison L, Toyloy S, Verheye S, editors. Prospective, multi-center evaluation of the DESolve Nx Novolimus-Eluting bioresorbable coronary scaffold: first report of one year clinical and imaging outcomes. San Francisco: Transcatheter Cardiovascular Therapeutics (TCT); 2013.

    Google Scholar 

  64. Grube E, editor. Bioabsorbable stents: the Boston Scientific & REVA technology. Barcelona: EuroPCR; 2009.

    Google Scholar 

  65. Costa RA, editor. REVA ReZolve clinical program update. Miami: Transcatheter Cardiovascular Therapeutics; 2012.

    Google Scholar 

  66. Fajadet J, editor. The ART BRS: design and FIH experiences: can a polymer-only scaffold do it alone? San Francisco: Transcatheter Cardiovascular Therapeutics; 2013.

    Google Scholar 

  67. Jabara R, Pendyala L, Geva S, Chen J, Chronos N, Robinson K. Novel fully bioabsorbable salicylate-based sirolimus-eluting stent. EuroIntervention. 2009;5(Suppl F):F58–64.

    Article  PubMed  Google Scholar 

  68. Wu Y, Shen L, Wang Q, Ge L, Xie J, Hu X, et al. Comparison of acute recoil between bioabsorbable poly-L-lactic acid XINSORB stent and metallic stent in porcine model. J Biomed Biotechnol. 2012;2012:413956.

    PubMed Central  PubMed  Google Scholar 

  69. Ge J, Chen Y, Qian J, Ge L, Wang Q, Yao K, et al., editors. A first-in-man study of XINSORB scaffold for patients with single de-novo coronary lesions. Paris: EuroPCR; 2014.

    Google Scholar 

  70. Cottone RJ, editor. Pre-clinical evaluations of combination drug eluting and CD34 antibody – coated bioabsorbable scaffold – program update. San Francisco: Transcatheter Cardiovascular Therapeutics; 2013.

    Google Scholar 

  71. Granada JF, editor. The Amaranth PLLA Based Bioresorbable Scaffold (ABRS) – experimental and early human results. San Fransisco: Transcatheter Cardiovascular Therapeutics; 2013.

    Google Scholar 

  72. Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 2007;369(9576):1869–75.

    Article  CAS  PubMed  Google Scholar 

  73. Haude M, Erbel R, Erne P, Verheye S, Degen H, Bose D, et al. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet. 2013;14.

    Google Scholar 

  74. Diletti R, Karanasos A, Muramatsu T, Nakatani S, Van Mieghem NM, Onuma Y, et al. Everolimus-eluting bioresorbable vascular scaffolds for treatment of patients presenting with ST-segment elevation myocardial infarction: BVS STEMI first study. Eur Heart J. 2014;35(12):777–86 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  75. Van Mieghem N, Wilschut J, Ligthart J, Witberg K, Van Geuns RJ, Regar E. Modified T-technique with bioresorbable scaffolds ensures complete carina coverage – an optical coherence tomography study. JACC Cardiovasc Interv. 2014;7:e109–10.

    Article  PubMed  Google Scholar 

  76. Ruzsa Z, van der Linden M, Van Mieghem NM, Regar E, Ligthart JM, Serruys P, et al. Culotte stenting with bioabsorbable everolimus-eluting stents. Int J Cardiol. 2013;168(2):e35–7.

    Article  PubMed  Google Scholar 

  77. Diletti R, Onuma Y, Farooq V, Gomez-Lara J, Brugaletta S, van Geuns RJ, et al. 6-month clinical outcomes following implantation of the bioresorbable everolimus-eluting vascular scaffold in vessels smaller or larger than 2.5 mm. J Am Coll Cardiol. 2011;58(3):258–64 [Multicenter Study].

    Article  PubMed  Google Scholar 

  78. Diletti R, Farooq V, Girasis C, Bourantas C, Onuma Y, Heo JH, et al. Clinical and intravascular imaging outcomes at 1 and 2 years after implantation of absorb everolimus eluting bioresorbable vascular scaffolds in small vessels. Late lumen enlargement: does bioresorption matter with small vessel size? Insight from the ABSORB cohort B trial. Heart. 2013;99(2):98–105.

    Article  CAS  PubMed  Google Scholar 

  79. Reiber JH, Tu S, Tuinenburg JC, Koning G, Janssen JP, Dijkstra J. QCA, IVUS and OCT in interventional cardiology in 2011. Cardiovasc Diagn Ther. 2011;1(1):57–70 [Review].

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn Regar MD, PhD, FESC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Ditzhuijzen, N.S., Karanasos, A., van der Sijde, J.N., van Soest, G., Regar, E. (2015). Bioabsorbable Stent. In: Jang, IK. (eds) Cardiovascular OCT Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-10801-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10801-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10800-1

  • Online ISBN: 978-3-319-10801-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics