Skip to main content

Tissue Engineering Breakthroughs

  • Chapter
  • First Online:
Bioengineering
  • 2849 Accesses

Abstract

Tissue engineering (TE) is an emerging multidisciplinary field involving biology, medicine, and engineering that is likely to revolutionize the ways we improve the health and quality of life for millions of people worldwide by restoring, maintaining, or enhancing tissue and organ function. Three essentials components of TE are: cells, scaffolds and molecules of extracellular matrix, designed to repair tissue defect. In addition to having a therapeutic application, where the tissue is either grown in a patient or outside the patient and transplanted, tissue engineering can have diagnostic applications where the tissue is made in vitro and used for testing drug metabolism and uptake, toxicity, and pathogenicity. The foundation of tissue engineering for either therapeutic or diagnostic applications is the ability to exploit living cells in a variety of ways. Tissue engineering research includes: biomaterials, cells, biomolecules, engineering design aspects, biomechanics, bio-informatics in order to help interventions not only at organ but also at cellular and molecular level. Therefore, gene therapy, manipulations with abzymes and rational vaccine design are also parts of TE. This Chapter will present the crucial breakthroughs in this field.

Stem cell research can revolutionize medicine, more than anything since antibiotics.

Ron Reagan (1911–2004)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Temple, J.P., Yeager, K., Bhumiratana, S., Vunjak-Novakovic, G., Grayson, W.L.: Bioreactor cultivation of anatomically shaped human bone grafts. Methods Mol. Biol. 1202, 57–78 (2014)

    Article  Google Scholar 

  2. HepaLife—Artificial Liver

    Google Scholar 

  3. British scientists grow human liver in a laboratory. Mail Online

    Google Scholar 

  4. World’s First Artificial Human Liver Grown In Lab. LiveScience

    Google Scholar 

  5. Van de Kamp, J., Jahnen-Dechent, W., Rath, B., Knuechel, R., Neuss, S.: Hepatocyte growth factor-loaded biomaterial for mesenchymal stem cell recruitment. Stem Cells Int. Article ID 892065, 9 (2013)

    Google Scholar 

  6. Krotz S, Robins J, Moore R, Steinhoff MM, Morgan J, Carson S. Model Artificial Human Ovary by Pre-Fabricated Cellular Self-Assembly. (2008) 64th Annual Meeting of the American Society for Reproductive Medicine, San Francisco, CA

    Google Scholar 

  7. Warwick, K., Gasson, M., Hutt, B., Goodhew, I., Kyberd, P., Schulzrinne, H., Wu, X.: Thought Communication and Control: A First Step using Radiotelegraphy. IEE Proc. Commun. 151(3), 185–189 (2004)

    Article  Google Scholar 

  8. Taylor, D.A.: Cell therapy-a 21st century hope for treating cardiovascular disease-a five-year retrospective and predictive view. Am. Heart Hosp. J. 9(1), E24–E27 (2011)

    Article  Google Scholar 

  9. Stojkovic, M., Stojkovic, P., Leary, C., Hall, V.J., Armstrong, L., Herbert, M., Nesbitt, M., Lako, M., Murdoch, A.: Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod. Biomed. Online 11(2), 226–231 (2005)

    Article  Google Scholar 

  10. Badylak, S.F., Taylor, D., Uygun, K.: Whole-organ tissue engineering; decellularization and recelullarization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13, 27–53 (2011)

    Article  Google Scholar 

  11. Mhashilkar, A., Atala, A.: Advent and maturation of regenerative medicine. Curr. Stem Cell Res. Ther. 7, 430–445 (2012)

    Article  Google Scholar 

  12. Boland, T., Xu, T., Damon, B., Cui, X.: Application of inkjet printing tissue engineering. Biotechnol. J. 1, 910–917 (2006)

    Article  Google Scholar 

  13. Schneider, R.K., et al.: The role of biomaterials in the direction of mesenchymal stem cell properties and extracellular matrix re-modelling in dermal tissue engineering. Biomaterials 31, 7948–7959 (2010)

    Article  Google Scholar 

  14. Chen, B.P., Leong, K.W.: Scafolding in tissue engineering: general approaches and tissue-specific considerations. Eur. Spine J. 17(Suppl 4), 467–479 (2008)

    Article  Google Scholar 

  15. Nemeno-Guanzon, J.G., et al.: Trends in tissue engineering. J. Biomed. Biotechnol. 2012, 956345 (2012). doi:10.1155/2012/956345. 14p

    Article  Google Scholar 

  16. Lee, J.I., Sato, M., Kim, H.W., Mochida, J.: Transplantatation of scaffold-free spheroids composed of synovium-derived cells and chondrocytes for the treatment of cartilage defects of the knee. Eur. Cells Mater. J. 22, 275–290 (2011)

    Google Scholar 

  17. Michael, A., Liebchner, K. (eds.): Computer Aided Tissue Engineering. Humana, New York (2012). ISBN 978-1-61779-764-4

    Google Scholar 

  18. Sun, W., Darkling, A., Starly, B., Nam, J.: Computer-aided tissue engineering: overview, scope and challenges. Biotecnol. Appl. Biochem. 39(Pt1), 29–47 (2004)

    Article  Google Scholar 

  19. Boland, T., Xu, T., Damon, B., Cui, X.: Application of inkjet printing to tissue engineering. Biotechnol. J. 9, 910–917 (2006)

    Article  Google Scholar 

  20. Atala, A., Bauer, S., Soker, S., Yoo, J.J., Retik, A.: Tissue-engineered bladders for patients needing cytoplasty. Lancet 367(9518), 1241–1246 (2006)

    Article  Google Scholar 

  21. Vunjak-Novakovic, G.: Tissue Engineering. J. Serbian Soc. Comput. Mech. 5(2), 29–36 (2011)

    Google Scholar 

  22. Rees, H.W., Panzer, S., Deter, M., Gabriel, C., Lambermont, M., Deneys, V., Sondag, D., Dickmeiss, E., Fischer-Nielsen, A., Korhonen, M., Krusius, T., Ali, A., Tiberghien, P., Schrezenmeier, H., Tonn, T., Seifried, E., Klüter, H., Politis, C., Stavropoulou-Gioka, A., Parara, M., Flesland, Ø., Nascimento, F., Balint, B., Fernández, P.M., Bart, T., Chen, F.E., Pamphilon, D.H.: International forum: new cellular therapies: is there a role for transfusion services? Vox Sang. 97, 77–90 (2009)

    Article  Google Scholar 

  23. Kucia, M., Zuba-Surma, E., Wysoczynski, M., Dobrowolska, H., Reca, R., Ratajczak, J., Ratajczak, M.Z.: Physiological and pathological consequences of identification of very small embryonic like (VSEL) stem cells in adult bone marrow. J. Physiol. Pharmacol. 57(Suppl 5), 5–18 (2006)

    Google Scholar 

  24. Huang, G.T.-J., Gronthos, S., Shi, S.: Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J. Dent. Res. 88, 792 (2009)

    Article  Google Scholar 

  25. Balint, B., Ivanović, Z., Petakov, M., Taseski, J., Jovčić, G., Stojanović, N., et al.: The cryopreservation protocol optimal for progenitor recovery is not optimal for preservation of marrow repopulating ability. Bone Marrow Transplant. 23(6), 613–619 (1999)

    Article  Google Scholar 

  26. Balint, B., Ljubenov, M., Stamatović, D., Todorović, M., Pavlović, M., Ostojić, G., et al.: Stem cell harvesting protocol research in autologous transplantation setting: large volume vs. conventional cytapheresis. Vojnosanit. Pregl. 65(7), 545–551 (2008)

    Article  Google Scholar 

  27. Balint, B.: Stem and progenitor cell harvesting, extracorporeal “graft engineering” and clinical use—initial expansion vs. current dillemas. Clin. Appl. Immunol. 5(1), 518–527 (2006)

    Google Scholar 

  28. Balint, B., Stamatovic, D., Todorovic, M., Jevtic, M., Ostojic, G., Pavlovic, M., et al.: Stem cells in the arrangement of bone marrow repopulation and regenerative medicine. Vojnosanit. Pregl. 64(7), 481–484 (2007)

    Article  Google Scholar 

  29. Balint, B., Todorovic, M., Jevtic, M., Ostojic, G., Ristanovic, E., Vojvodic, D., et al.: The use of stem cells for marrow repopulation and in the field of regenerative medicine. Mak. Med. Pregl. 63(Suppl 75), 12–17 (2009)

    Google Scholar 

  30. Alvarez, A., Unda, F., Cañavate, M.L., Hilario, E.: Stem cell and regenerative medicine. Curr. Stem Cell Res. Ther. 4(4), 287–297 (2009)

    Article  Google Scholar 

  31. Mayorga, M., Finan, A., Penn, M.: Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue. Stem Cell Rev. Rep. 5(1), 51–60 (2009)

    Article  Google Scholar 

  32. Pavlovic, M., Balint, B.: The use of stem cells to repair cardiac tissue. Anest. Reanim. Transfuziol. 34, 129–150 (2006)

    Google Scholar 

  33. Sell, S. (ed.): Stem cells. In: Stem Cell Handbook, pp. 1–18. Humana, Totowa (2004)

    Google Scholar 

  34. Weissman, I.: Stem cell research: paths to cancer therapies and regenerative medicine. JAMA 294(11), 1359–1366 (2005)

    Article  Google Scholar 

  35. Körbling, M., Estrov, Z.: Adult stem cells for tissue repair—a new therapeutic concept? N. Engl. J. Med. 349, 570–582 (2003)

    Article  Google Scholar 

  36. Tsai, R.Y.L.: A molecular view of stem cell and cancer cell self-renewal. Int. J. Biochem. Cell Biol. 36, 684–694 (2004)

    Article  Google Scholar 

  37. Cai, J., Weiss, M.L., Rao, M.S.: In search of “stemness”. Exp. Hematol. 32, 585–598 (2004)

    Article  Google Scholar 

  38. Doyonnas, R., Blau, H.M.: What is the future of stem cell research? In: Sell, S. (ed.) Stem Cell Handbook, pp. 491–499. Humana, Totowa (2004)

    Google Scholar 

  39. Fuchs, S., Satler, L., Kornowski, R., Okubagzi, P., Weisz, G., Baffour, R., et al.: Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease. J. Am. Coll. Cardiol. 41, 1721–1724 (2003)

    Article  Google Scholar 

  40. Perin, E.C., Dohmann, H.F.R., Borojevic, R., Silva, S.A., Sousa, A.L.S., Mesquita, C.T., et al.: Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107, 2294–2302 (2003)

    Article  Google Scholar 

  41. Strauer, B.E., Brehm, M., Zeus, T., Köstering, M., Hernandez, A., Sorg, R.V., et al.: Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106, 1913–1918 (2002)

    Article  Google Scholar 

  42. Aicher, A., et al.: Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107, 2134–2139 (2003)

    Article  Google Scholar 

  43. Beauchamp, J.R., Morgan, J.E., Pagel, C.N., Partridge, T.A.: Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J. Cell Biol. 144, 1113–1122 (1999)

    Article  Google Scholar 

  44. Taylor, D.A., et al.: Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 4, 929–933 (1998)

    Article  Google Scholar 

  45. Vassilopoulos, G., Wang, P.R., Russel, D.V.: Transplanted bone marrow regenerates liver by cell fusion. Nature 422(6934), 901–904 (2003)

    Article  Google Scholar 

  46. Wang, X., Willenbring, h., Akkari, Y., et al.: Cell fusion is the principal source of bone-marrow derived hepatocytes. Nature 422(6934), 897–901 (2003)

    Article  Google Scholar 

  47. Chen, J., Zhang, Z.G., Li, Y., Wang, L., et al.: Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ. Res. 92(6), 692–699 (2003)

    Article  Google Scholar 

  48. Chen, J., Leong, K.W.: Scafolding in tissue engineering: general approaches and tissue-specific considerations. Eur. Spine J. 17(Suppl 4), 467–479 (2008)

    Article  Google Scholar 

  49. Nemeno-Guanzon, J.G., et al.: Trends in Tissue engineering. J. Biomed. Biotechnol. 956345, 14 (2012). doi:10.1155/2012/956345

    Google Scholar 

  50. Lee, J.I., Sato, M., Kim, H.W., Mochida, J.: Transplantatation of scaffold-free spheroids composed of synovium-derived cells and chondrocytes for the treatment of cartilage defects of the knee. Eur. Cells Mater. J. 22, 275–290 (2011)

    Google Scholar 

  51. Liebchner, M.A.K. (ed.): Computer Aided Tissue Engineering. Humana, Totowa (2012). ISBN 978-1-61779-764-4

    Google Scholar 

  52. Sun, W., Darkling, A., Starly, B., Nam, J.: Computer-aided tissue engineering: overview, scope and shallenges. Biotecnol. Appl. Biochem. 39(Pt1), 29–47 (2004)

    Article  Google Scholar 

  53. Boland, T., Xu, T., Damon, B., Cui, X.: Application of inkjet printing to tissue engineering. Biotechnol. J. 9, 910–917 (2006)

    Article  Google Scholar 

  54. Atala, A., Bauer, S., Soker, S., Yoo, J.J., Retik, A.B.: Tissue-engineered bladders for patients needing cytoplasty. Lancet 367(9518), 1241–1246 (2006)

    Article  Google Scholar 

  55. http://www.neuralstem.com/patient-info-treatments-in-development#celltherapy

External Links

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pavlovic, M. (2015). Tissue Engineering Breakthroughs. In: Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-10798-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10798-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10797-4

  • Online ISBN: 978-3-319-10798-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics