Sampled-Data Control of Switched Affine Systems

  • Laurentiu HetelEmail author
  • Emilia Fridman
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 457)


This chapter considers the stabilization problem for switched affine systems with a sampled-data switching law. The switching law is assumed to be a function of the system state at sampling instants. Sampling interval may be subject to variations or uncertainty. Switching law design criteria, taking into account the sampled-data implementation and uncertainties, are provided. Numerical examples illustrate the approach.


Lyapunov Function Sampling Instant Switch Linear System Continuous Time Case Vary Sampling Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research leading to these results has received funding from the European Community’s \(7\)th Framework Programme (grant agreement No 257462) HYCON2 Network of Excellence and Israel Science Foundation (grant No 754/10).


  1. 1.
    Åström, K.J., Wittenmark, B.: Computer-Controlled Systems. Prentice Hall, New Jersy (1997)Google Scholar
  2. 2.
    Deaecto, G.S., Geromel, J.C., Garcia, F.S., Pomilio, J.A.: Switched affine systems control design with application to dc-dc converters. Control Theory Appl. IET 4(7), 1201–1210 (2010). JulyGoogle Scholar
  3. 3.
    Defoort, M., Djemai, M., Floquet, T., Perruquetti, W.: On finite time observer design for multicellular converter. In: 11th IVSS, pp. 56–61 (2010)Google Scholar
  4. 4.
    Fridman, E.: New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Syst. Control. Lett. 43, 309–319 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fridman, E.: A refined input delay approach to sampled-data control. Automatica 46(2), 421–427 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fridman, E., Seuret, A., Richard, J.-P.: Robust sampled-data stabilization of linear systems. Automatica 40, 1441–1446 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fujioka, H., Kao, C.-Y., Almer, S., Jonsson, U.: Robust tracking with performance for pwm systems. Automatica 45(8), 1808–1818 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hauroigne, P., Riedinger, P., Iung, C.: Switched affine systems using sampled-data controllers: robust and guaranteed stabilization. IEEE Trans. Autom. Control. 56(12), 2929–2935 (2011)Google Scholar
  9. 9.
    Hetel, L., Daafouz, J., Iung, C.: Stabilization of arbitrary switched linear systems with unknown time varying delays. IEEE Trans Autom Control 51(10), 1668–1674 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hetel, L., Fridman, E.: Sampled-data control of switched affine systems: a continuous-time approach. In: Proceedings of the 7th IFAC Symposium on Robust Control Design, Aalborg, Denmark (2012)Google Scholar
  11. 11.
    Hetel, L., Kruszewski, A., Perruquetti, W., Richard, J.: Discrete and intersample analysis of systems with aperiodic sampling. IEEE Trans. Autom. Control. 56(7), 1696–1701 (2011)Google Scholar
  12. 12.
    Mirkin, L.: Some remarks on the use of time-varying delay to model sample-and-hold circuits. IEEE Trans. Autom. Control. 52(6), 1109–1112 (2007)Google Scholar
  13. 13.
    Naghshtabrizi, P., Teel, A., Hespanha, J.P.: Exponential stability of impulsive systems with application to uncertain sampled-data systems. Syst. Control. Lett. 57(5), 378–385 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Oishi, Y., Fujioka, H.: Stability and stabilization of aperiodic sampled-data control systems using robust linear matrix inequalities. Automatica 46(8), 1327–1333 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Patino, D., Riedinger, P., Iung, C.: Predictive control approach for multicellular converters. In: 34th Annual Conference of IEEE, Industrial Electronics, IECON 2008, pp. 3309–3314, november 2008Google Scholar
  16. 16.
    Patino, D., Riedinger, P., Iung, C.: Practical optimal state feedback control law for continuous-time switched affine systems with cyclic steady state. Int. J. Control. 82(7), 1357–1376 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pettersson, S., Lennartson, B.: Stability and robustness for hybrid systems. In: Proceedings of the 35th Conference on Decision and Control, pp. 1202–1207, December 1996Google Scholar
  18. 18.
    Seuret, A.: A novel stability analysis of linear systems under asynchronous samplings. Automatica 48(1), 177–182 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C.: Stability criteria for switched and hybrid systems. Invited paper for SIAM Review 49(4), 545–592 (2007)Google Scholar
  20. 20.
    Sira-Ramirez, H., Rios-Bolivar, M.: Sliding mode control of dc-to-dc power converters via extended linearization. IEEE Trans. Circuits Syst. I: Fundam. Theor. Appl. 41(10), 652–661 (1994)Google Scholar
  21. 21.
    Sivashankar, N., Khargonekar, P.P.: Robust stability and performance analysis of sampled-data systems. IEEE Trans. Autom. Control. 38(1), 58–69 (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratoire d’Automatique Génie Informatique et Signal (CNRS LAGIS UMR 8219)Ecole Centrale de LilleVilleneuve d’Ascq CedexFrance
  2. 2.Department of Electrical Engineering and SystemsTel Aviv UniversityRamat Aviv, Tel AvivIsrael

Personalised recommendations