Advertisement

Hybrid Systems and Verification by Abstraction

  • Maria Domenica Di Benedetto
  • Stefano Di GennaroEmail author
  • Alessandro D’Innocenzo
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 457)

Abstract

The increase of functionality offered by today’s control systems based on embedded systems requires more effort to verify the controlled system, as a malfunction can yield catastrophic results. These systems are usually hybrid systems, mixing continuous and discrete dynamics. When analyzing a hybrid system, the dimension of the state space is often so large that formal verification is out of the question. Its analysis can be carried out using abstraction, namely constructing a system with a smaller state space, preserving the properties to verify in the original system. Making use of a notion of diagnosability for hybrid systems, generalizing the notion of observability, in this paper it is shown an abstraction procedure translating a hybrid system into a timed automaton, in order to verify observability and diagnosability properties. The subclass of hybrid systems here considered is that of the durational graphs. We propose a procedure to check diagnosability, and show that the verification problem belongs to the complexity class P. This procedure is applied to an electromagnetic valve system for camless engines.

References

  1. 1.
    Acosta Lua, C., Toledo, B.C., Di Benedetto, M.D., Di Gennaro, S.: Feedback regulation of electromagnetic valves for camless engines. In: Proceedings of the European Control Conference—ECC 2007, pp. 4103–4110 (2007)Google Scholar
  2. 2.
    Lua, C.A., Toledo, B.C., Di Benedetto, M.D., Di Gennaro, S.: Output feedback regulation of electromagnetic valves for camless engines. In: Proceedings of the American Control Conference 2007, pp. 2967–2972 (2007)Google Scholar
  3. 3.
    Anai, H., Weispfenning, V.: In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) Reach Set computations Using Real Quantifier Elimination, Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, pp. 103–117. Springer, Berlin (2001)Google Scholar
  4. 4.
    Alur, R., Dill, D.L.: A theory of timed automata, l. Theor. Comput. Sci. 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138, 3–34 (1995)CrossRefzbMATHGoogle Scholar
  6. 6.
    Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate Reachability Analysis of Piecewise Linear Dynamical Systems, Hybrid Systems: Computation and Control. Lecture Notes in Computer Science. Springer, Pittsburgh (2000)Google Scholar
  7. 7.
    Choffrut, C., Goldwurm, M.: Timed automata with periodic clock constraints. J. Autom. Lang. Comb. 5, 371–404 (2000)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chutinan, A., Krogh, B.: Computing polyhedral approximations to flow pipes for dynamic systems. In: Proceedings of the 37th IEEE Conference on Decision and Control, pp. 2089–2094 (1998)Google Scholar
  9. 9.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge, Massachusetts (2002)Google Scholar
  10. 10.
    Di Benedetto, M.D., Di Gennaro, S., D’Innocenzo, A.: Error detection within a specific time horizon and application to air traffic management. In: Proceedings of the Joint 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC’05), Seville, Spain, pp. 7472–7477 (2005)Google Scholar
  11. 11.
    Di Benedetto, M.D., Di Gennaro, S., D’Innocenzo, A.: Critical States Detection with Bounded Probability of False Alarm and Application to Air Traffic Management. In: Proceedings of the 2nd IFAC Conference on Analysis and Design of Hybrid Systems (ADHS), Alghero, Sardinia, Italy (2006)Google Scholar
  12. 12.
    Di Gennaro, S., Castillo Toledo, B., Di Benedetto, M.D.: Non-linear control of electromagnetic valves for camless engines. Int. J. Control Special Issue Autom. Control 80(11), 1796–1813 (2007)Google Scholar
  13. 13.
    D’Innocenzo, A., Di Benedetto, M.D., Di Gennaro, S.: In: Hespanha, J., Tiwari, A. (eds.) Observability of Hybrid Automata by Abstraction, Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, pp. 169–183. Springer, Berlin (2006)Google Scholar
  14. 14.
    D’Innocenzo, A., Julius, A.A., Pappas, G.J., Di Benedetto, M.D., Di Gennaro, S.: Verification of temporal properties on hybrid automata by simulation relations. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans (2007)Google Scholar
  15. 15.
    D’Innocenzo, A., Julius, A.A., Di Benedetto, M.D., Pappas, G.J.: Approximate timed abstractions of hybrid automata. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans (2007)Google Scholar
  16. 16.
    Girard, A.: In: Morari, M., Thiele, L. (eds.) Reachability of Uncertain Linear Systems using Zonotopes, Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, pp. 291–305. Springer, Berlin (2005)Google Scholar
  17. 17.
    Guibas, L.J., Nguyen, A., Zhang, L.: Zonotopes as bounding volumes. In: Proceedings of the 14th annual ACM-SIAM symposium on Discrete Algorithms, pp. 803–812, Stanford (2003)Google Scholar
  18. 18.
    Han, Z., Krogh, B.H.: In: Hespanha, J., Tiwari, A. (eds.) Reachability Analysis of Large-Scale Affine Systems Using Low-Dimensional Polytopes, Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, pp. 287–301. Springer, Heidelberg (2006)Google Scholar
  19. 19.
    Kurzhanski, A.B., Varaiya, P.: In: Lynch, N., Krogh, B.H. (eds.) Ellipsoidal Techniques for Reachability Analysis, Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, pp. 202–214. Springer, Heidelberg (2000)Google Scholar
  20. 20.
    Kurzhanski, A.A., Varaiya, P.: Ellipsoidal toolbox. Technical Report, UC, Berkeley (2006)Google Scholar
  21. 21.
    Julius, A.A., Fainekos, G., Anand, M., Lee, I., Pappas, G.J.: Robust Test Generation and Coverage for Hybrid Systems, Hybrid Systems: Computation and Control. Lecture Notes in Computer Science. Springer, Heidelberg (2007)Google Scholar
  22. 22.
    Fourlas, G.K., Kyriakopoulos, K.J., Krikelis, N.J.: Diagnosability of hybrid systems. In: Proceedings of the 10th Mediterranean Conference on Control and Automation - MED2002, pp. 3994–3999, Lisbon (2002)Google Scholar
  23. 23.
    Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy—a survey and some new results. Automatica 26(3), 459–474 (1990)CrossRefzbMATHGoogle Scholar
  24. 24.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. Softw. Tools Technol. Transf. 1, 110–122 (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory. Languages and Computation. Addison-Wesley, Reading (1979)Google Scholar
  26. 26.
    Girard, A.: In: Morari, M., Thiele, L. (eds.) Reachability of Uncertain Linear Systems using Zonotopes, Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, pp. 291–305. Springer, New York (2005)Google Scholar
  27. 27.
    Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computations for families of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Laroussinie, F., Markey, N., Schnoebelen, P.: Efficient timed model checking for discrete-time systems. Theor. Comput. Sci. 353(1–3), 249–271, Elsevier Science Publishers (2006) (http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/LMS-TCS05.pdf)
  29. 29.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transf. 1(1), 134–152 (1997)CrossRefzbMATHGoogle Scholar
  30. 30.
    Lin, F.: Diagnosability of discrete event systems and its applications. J. Discrete Event Dyn. Syst. 4(1), 197–212 (1994)CrossRefzbMATHGoogle Scholar
  31. 31.
    Lygeros, J., Tomlin, C., Sastry, S.: Controllers for Reachability Specifications for Hybrid Systems. Automatica 35(3), 349–370 (1999) (Special Issue on Hybrid Systems)Google Scholar
  32. 32.
    McIlraith, S., Biswas, G., Clancy, D., Gupta, V.: In: Lynch, N., Krogh, B. (eds.) Hybrid Systems Diagnosis, in Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, pp. 282–295. Springer, Heidelberg (2000)Google Scholar
  33. 33.
    Ozveren, C.M., Willsky, A.S.: Observability of discrete event dynamic systems. IEEE Trans. Autom. Control 35(7), 797–806 (1990)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Paoli, A., Lafortune, S.: Safe diagnosability for fault tolerant supervision of discrete event systems. Automatica 41(8), 1335–1347 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Diagnosability of discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–1575 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Sheth, A., Hartung, C., Han, R.: A decentralized fault diagnosis system for wireless sensor networks. In: Proceedings of the 2nd IEEE International Conference on Mobile Ad-Hoc and Sensor Systems (MASS) 2005, pp. 192–194 (1999)Google Scholar
  37. 37.
    Tripakis, S.: In: Damm, W., Olderog, E.R. (eds.) Fault Diagnosis for Timed Automata. Lecture Notes in Computer Science, pp. 205–221. Springer, Heidelberg (2002)Google Scholar
  38. 38.
  39. 39.
    Yazarel, H., Pappas, G.J.: Geometric programming relaxations for linear system reachability. In: Proceedings of the 2004 American Control Conference, Boston, MA (2004)Google Scholar
  40. 40.
    Yoo, T., Lafortune, S.: Polynomial-time verification of diagnosability of partially-observed discrete-event systems. IEEE Trans. Autom. Control 47(9), 1491–1495 (2002)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Yovine, S.: Kronos: a verification tool for real-time systems. Int. J. Softw. Tools Technol. Transf. Springer-Verlag 1(1), 123–133 (1997)CrossRefzbMATHGoogle Scholar
  42. 42.
    Zhao, F., Koutsoukos, X., Haussecker, H., Reich, J., Cheung, P.: Monitoring and fault diagnosis of hybrid systems. IEEE Trans. Syst. Man Cybern. I—Part B 35(6), 1225–1240 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Maria Domenica Di Benedetto
    • 1
  • Stefano Di Gennaro
    • 1
    Email author
  • Alessandro D’Innocenzo
    • 1
  1. 1.Department of Information Engineering, Computer Science and Mathematics, Center of Excellence DEWSUniversity of L’AquilaL’AquilaItaly

Personalised recommendations