Skip to main content

Introduction

  • Chapter
  • First Online:
Bifurcation without Parameters

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2117))

  • 1787 Accesses

Abstract

This chapter introduces the setting in which we shall study bifurcations without parameters. We compare it with classical bifurcation theory and give an overview and classification of the results presented in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afendikov, A., Fiedler, B., Liebscher, S.: Plane Kolmogorov flows and Takens-Bogdanov bifurcation without parameters: The doubly reversible case. Asymptotic Anal. 60(3–4), 185–211 (2008)

    MATH  MathSciNet  Google Scholar 

  2. Afendikov, A., Fiedler, B., Liebscher, S.: Plane Kolmogorov flows and Takens-Bogdanov bifurcation without parameters: The singly reversible case. Asymptotic Anal. 72(1–2), 31–76 (2011)

    MATH  MathSciNet  Google Scholar 

  3. Alexander, J., Auchmuty, G.: Global bifurcation of phase-locked oscillators. Arch. Ration. Mech. Anal. 93, 253–270 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Anosov, D.: Roughness of geodesic flows on compact riemannian manifolds of negative curvature. Dokl. Akad. Nauk SSSR 145, 707–709 (1962). English transl. in Sov. Math. Dokl. 3, 1068–1069 (1962)

    Google Scholar 

  5. Arnol’d, V.: Geometrical methods in the theory of ordinary differential equations. Grundl. Math. Wiss., vol. 250. Springer, New York (1983)

    Google Scholar 

  6. Arnol’d, V.: Dynamical systems V. Bifurcation theorie and catastrophe theory. Enc. Math. Sciences, vol. 5. Springer, Berlin (1994)

    Google Scholar 

  7. Chillingworth, D., Sbano, L.: Bifurcation from a normally degenerate manifold. Proc. Lond. Math. Soc. (3) 101(1), 137–178 (2010)

    Google Scholar 

  8. Chossat, P., Lauterbach, R.: Methods in equivariant bifurcations and dynamical systems. Advanced Series in Nonlinear Dynamics, vol. 15. World Scientific, Singapore (2000)

    Google Scholar 

  9. Farkas, M.: ZIP bifurcation in a competition model. Nonlinear Anal. Theory Methods Appl. 8, 1295–1309 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equat. 31, 53–89 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fiedler, B., Liebscher, S.: Generic Hopf bifurcation from lines of equilibria without parameters: II. Systems of viscous hyperbolic balance laws. SIAM J. Math. Anal. 31(6), 1396–1404 (2000)

    MATH  MathSciNet  Google Scholar 

  12. Fiedler, B., Liebscher, S.: Takens-Bogdanov bifurcations without parameters, and oscillatory shock profiles. In: Broer, H., Krauskopf, B., Vegter, G. (eds.) Global Analysis of Dynamical Systems, Festschrift dedicated to Floris Takens for his 60th birthday, pp. 211–259. IOP, Bristol (2001)

    Google Scholar 

  13. Fiedler, B., Liebscher, S., Alexander, J.: Generic Hopf bifurcation from lines of equilibria without parameters: I. Theory. J. Differ. Equat. 167, 16–35 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fiedler, B., Liebscher, S., Alexander, J.: Generic Hopf bifurcation from lines of equilibria without parameters: III. Binary oscillations. Int. J. Bif. Chaos Appl. Sci. Eng. 10(7), 1613–1622 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Golubitsky, M., Stewart, I.: The symmetry perspective. From equilibrium to chaos in phase space and physical space. Progress in Mathematics, vol. 200. Birkhäuser, Basel (2002)

    Google Scholar 

  16. Hale, J., Koçak, H.: Dynamics and bifurcations. Texts in Appl. Math., vol. 3. Springer, New York (1991)

    Google Scholar 

  17. Härterich, J., Liebscher, S.: Travelling waves in systems of hyperbolic balance laws. In: Warnecke, G. (ed.) Analysis and Numerical Methods for Conservation Laws, pp. 281–300. Springer, New York (2005)

    Chapter  Google Scholar 

  18. Heinzle, J., Uggla, C.: Mixmaster: Fact and belief. Classical Quant. Grav. 26(7), 075,016 (2009)

    Google Scholar 

  19. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points — fold and canard points in two dimensions. SIAM J. Math. Anal. 33(2), 286–314 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kurakin, L., Yudovich, V.: Bifurcation of the branching of a cycle in n-parameter family of dynamic systems with cosymmetry. Chaos 7(3), 376–386 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kuznetsov, Y.: Elements of applied bifurcation theory. Appl. Math. Sci., vol. 112. Springer, New York (1995)

    Google Scholar 

  22. Liebscher, S.: Stabilität von Entkopplungsphänomenen in Systemen gekoppelter symmetrischer Oszillatoren. Diplomarbeit, Freie Universität Berlin (1997)

    Google Scholar 

  23. Liebscher, S.: Dynamics near manifolds of equilibria of codimension one and bifurcation without parameters. Electron. J. Differ. Equat. 63, 1–12 (2011)

    MathSciNet  Google Scholar 

  24. Liebscher, S., Härterich, J., Webster, K., Georgi, M.: Ancient dynamics in Bianchi models: Approach to periodic cycles. Commun. Math. Phys. 305, 59–83 (2011)

    Article  MATH  Google Scholar 

  25. Riaza, R.: Manifolds of equilibria and bifurcations without parameters in memristive circuits. SIAM J. Appl. Math. 72, 877–896 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shoshitaishvili, A.: Bifurcations of topological type of a vector field near a singular point. Trudy Semin. Im. I. G. Petrovskogo 1, 279–309 (1975)

    Google Scholar 

  27. Smale, S.: Structurally stable systems are not dense. Amer. J. Math. 88, 491–496 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vanderbauwhede, A.: Centre manifolds, normal forms and elementary bifurcations. In: Kirchgraber, U., Walther, H.O. (eds.) Dynamics Reported 2, pp. 89–169. Teubner & Wiley, Stuttgart (1989)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liebscher, S. (2015). Introduction. In: Bifurcation without Parameters. Lecture Notes in Mathematics, vol 2117. Springer, Cham. https://doi.org/10.1007/978-3-319-10777-6_1

Download citation

Publish with us

Policies and ethics