Skip to main content

Application of Evolutionary Methods to Semiconductor Double-Chirped Mirrors Design

  • Conference paper
  • 2373 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8672)

Abstract

This paper reports on a successful application of evolutionary computation techniques to the computer aided design of a dedicated highly dispersive mirror which is used in an ultrafast laser. The mirror is a GaAs plate coated with many interleaving layers of GaAs/AlAs and SiO2/Si3N4 layers whose thickness undergo optimization. We report and compare results obtained by leading global optimization techniques: Covariance Matrix Adaptation Evolution Strategy and Differential Evolution, as well as few efficient local optimization methods: Nelder-Mead and variable metric. The evolutionary designed mirror has been manufactured by the Molecular Beam Epitaxy technology and the measurements confirmed successful implementation of the instrument.

Keywords

  • CMA-ES
  • Differential Evolution
  • Double Chirped Mirror

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-10762-2_75
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-10762-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liang, J., et al.: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Technical report, Comp. Intell. Lab., Zhengzhou University and Nanyang Technological University (2013)

    Google Scholar 

  2. INRIA: Black-box optimization benchmarking (BBOB) (2013), http://coco.gforge.inria.fr/doku.php?id=bbob-2013

  3. R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013)

    Google Scholar 

  4. Ardia, D., et al.: DEoptim: Differential Evolution in R (2013), Package ver. 2.2-2

    Google Scholar 

  5. Trautmann, H., Mersmann, O., Arnu, D.: cmaes: Covariance Matrix Adapting Evolutionary Strategy (2011) R package version 1.0-11

    Google Scholar 

  6. Storn, R.: Differential evolution research – trends and open questions. In: Chakraborty, U. (ed.) Advances in Differential Evolution. SCI, vol. 143, pp. 1–31. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    CrossRef  Google Scholar 

  8. Hansen, N., et al.: Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In: GECCO, pp. 1689–1696. ACM (2010)

    Google Scholar 

  9. Weiler, S.: Ultrafast lasers-high-power pico-and femtosecond lasers enable new applications. Laser Focus World 47(10), 55 (2011)

    Google Scholar 

  10. Braun, M., Gilch, P., Zinth, W.: Ultrashort laser pulses in biology and medicine. Springer (2008)

    Google Scholar 

  11. Keller, U.: Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)

    CrossRef  Google Scholar 

  12. Matuschek, N.: Theory and design of double-chirped mirrors. PhD thesis, ETH Zürich (1999)

    Google Scholar 

  13. Marcuse, D.: Theory of dielectric optical waveguides. Academic, New York (1974)

    Google Scholar 

  14. Bialynicki-Birula, I., Cieplak, M., Kaminski, J.: Theory of quanta. Oxford University Press, New York (1992)

    Google Scholar 

  15. Chilwell, J., Hodgkinson, I.: Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. JOSA A 1(7), 742–753 (1984)

    CrossRef  Google Scholar 

  16. Yakovlev, V., Tempea, G.: Optimization of chirped mirrors. Applied Optics 41(30), 6514–6520 (2002)

    CrossRef  Google Scholar 

  17. Yan-Zhi, W., et al.: Design and fabrication of chirped mirror. Chinese Physics Letters 26(9) (2009)

    Google Scholar 

  18. Tikhonravov, A.V.: Needle optimization technique: the history and the future. In: Optical Science, Engineering and Instrumentation 1997, International Society for Optics and Photonics, pp. 2–7 (1997)

    Google Scholar 

  19. Pervak, V., et al.: High-dispersive mirrors for femtosecond lasers. Optics Express 16(14), 10220–10233 (2008)

    CrossRef  Google Scholar 

  20. Adamski, K.: Evolutionary algorithm versus variable metric method in digital FIR filter design. In: EUROCON 2007, pp. 116–121 (2007)

    Google Scholar 

  21. Arabas, J., Miazga, P.: Computer aided design of a layout of planar circuits by means of evolutionary algorithms. CIT. Journal of Computing and Information Technology 7(1), 61–76 (1999)

    Google Scholar 

  22. Rios, L., Sahinidis, N.: Derivative-free optimization: a review of algorithms and comparison of software implementations. Journal of Global Optimization 56(3), 1247–1293 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

  23. Bihorel, S., Baudin, M.: Neldermead: R port of the Scilab neldermead module (2014), R package version 1.0-8

    Google Scholar 

  24. Zhu, C., et al.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)

    CrossRef  MATH  Google Scholar 

  25. Hansen, N.: CMA-ES source code (2014), https://www.lri.fr/~hansen/cmaes_inmatlab.html

  26. Varadhan, R., Borchers, H.W.: dfoptim: derivative-free optimization (2011), R package version 2011.8-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Biedrzycki, R. et al. (2014). Application of Evolutionary Methods to Semiconductor Double-Chirped Mirrors Design. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10762-2_75

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10761-5

  • Online ISBN: 978-3-319-10762-2

  • eBook Packages: Computer ScienceComputer Science (R0)