An Extended Michigan-Style Learning Classifier System for Flexible Supervised Learning, Classification, and Data Mining

  • Ryan J. Urbanowicz
  • Gediminas Bertasius
  • Jason H. Moore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8672)


Advancements in learning classifier system (LCS) algorithms have highlighted their unique potential for tackling complex, noisy problems, as found in bioinformatics. Ongoing research in this domain must address the challenges of modeling complex patterns of association, systems biology (i.e. the integration of different data types to achieve a more holistic perspective), and ‘big data’ (i.e. scalability in large-scale analysis). With this in mind, we introduce ExSTraCS (Extended Supervised Tracking and Classifying System), as a promising platform to address these challenges using supervised learning and a Michigan-Style LCS architecture. ExSTraCS integrates several successful LCS advancements including attribute tracking/feedback, expert knowledge covering (with four built-in attribute weighting algorithms), a flexible and efficient rule representation (handling datasets with both discrete and continuous attributes), and rapid non-destructive rule compaction. A few novel mechanisms, such as adaptive data management, have been included to enhance ease of use, flexibility, performance, and provide groundwork for ongoing development.


Learning Classifier System Genetics Epidemiology Epistasis Heterogeneity Evolutionary Algorithm Systems Biology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Urbanowicz, R.J., Moore, J.H.: Learning classifier systems: A complete introduction, review, and roadmap. Journal of Artificial Evolution and Applications (2009)Google Scholar
  2. 2.
    Thornton-Wells, T., Moore, J., Haines, J.: Genetics, statistics and human disease: Analytical retooling for complexity. TRENDS in Genetics 20(12), 640–647 (2004)CrossRefGoogle Scholar
  3. 3.
    Wilson, S.: Classifier fitness based on accuracy. Evo. Comp. 3(2), 149–175 (1995)CrossRefGoogle Scholar
  4. 4.
    Bernadó-Mansilla, E., Garrell-Guiu, J.: Accuracy-based learning classifier system: Models, analysis and applications to classification tasks. Evo. Comp. 11(3), 209–238 (2003)CrossRefGoogle Scholar
  5. 5.
    Urbanowicz, R., Moore, J.: The application of michigan-style learning classifier systems to address genetic heterogeneity and epistasis in association studies. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 195–202. ACM (2010)Google Scholar
  6. 6.
    Urbanowicz, R., Moore, J.: The application of pittsburgh-style lcs to address genetic heterogeneity and epistasis in association studies. Parallel Problem Solving from Nature–PPSN XI, 404–413 (2011)Google Scholar
  7. 7.
    Urbanowicz, R., Granizo-Mackenzie, A., Moore, J.: Instance-linked attribute tracking and feedback for michigan-style supervised learning classifier systems. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, pp. 927–934. ACM (2012)Google Scholar
  8. 8.
    Urbanowicz, R.J., Andrew, A.S., Karagas, M.R., Moore, J.H.: Role of genetic heterogeneity and epistasis in bladder cancer susceptibility and outcome: A LCS approach. Journal of the American Medical Informatics Association (2013)Google Scholar
  9. 9.
    Urbanowicz, R.J., Granizo-Mackenzie, D., Moore, J.H.: Using expert knowledge to guide covering and mutation in a michigan style LCS to detect epistasis and heterogeneity. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 266–275. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Tan, J., Moore, J., Urbanowicz, R.: Rapid rule compaction strategies for global knowledge discovery in a supervised learning classifier system. In: Advances in Artificial Life, ECAL, vol. 12, pp. 110–117 (2013)Google Scholar
  11. 11.
    Bacardit, J., Krasnogor, N.: A mixed discrete-continuous attribute list representation for large scale classification domains. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1155–1162. ACM (2009)Google Scholar
  12. 12.
    Urbanowicz, R.J., Granizo-Mackenzie, A., Moore, J.H.: An analysis pipeline with statistical and visualization-guided knowledge discovery for michigan-style learning classifier systems. IEEE Computational Intelligence Magazine 7(4), 35–45 (2012)CrossRefGoogle Scholar
  13. 13.
    DeJong, K.A., Spears, W.M.: Learning concept classification rules using genetic algorithms. Technical report, DTIC Document (1990)Google Scholar
  14. 14.
    Greene, C., Penrod, N., Kiralis, J., Moore, J.: Spatially uniform relieff (surf) for computationally-efficient filtering of gene-gene interactions. BioData Mining 2(1), 1–9 (2009)CrossRefGoogle Scholar
  15. 15.
    Kononenko, I.: Estimating attributes: analysis and extensions of relief. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994)Google Scholar
  16. 16.
    Greene, C.S., Himmelstein, D.S., Kiralis, J., Moore, J.H.: The informative extremes: Using both nearest and farthest individuals can improve relief algorithms in the domain of human genetics. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2010. LNCS, vol. 6023, pp. 182–193. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Granizo-Mackenzie, D., Moore, J.H.: Multiple threshold spatially uniform relieff for the genetic analysis of complex human diseases. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds.) EvoBIO 2013. LNCS, vol. 7833, pp. 1–10. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Urbanowicz, R.J., Kiralis, J., Sinnott-Armstrong, N.A., Heberling, T., Fisher, J.M., Moore, J.H.: Gametes: A fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Mining 5(1), 16 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ryan J. Urbanowicz
    • 1
  • Gediminas Bertasius
    • 1
  • Jason H. Moore
    • 1
  1. 1.Department of Genetics Geisel School of MedicineInstitute for Quantitative Biomedical SciencesLebanonUSA

Personalised recommendations