Birth-Death Models of Information Spread in Structured Populations

  • Burton VoorheesEmail author
Part of the Emergence, Complexity and Computation book series (ECC, volume 14)


Following on the seminal work of Lieberman, et al [1], analysis of information spread in structured populations has become a major area of research interest. This work, together with research on general networks [e.g., 2 – 8], has inspired a number of graph based evolutionary models [e.g. 9 – 21]. The generality of such models can be seen through a partial listing of questions to which they have been applied: the spread of information, gossip, and rumors [22 – 25]; the spread of ideas and innovations [26 – 30]; the probability of a mutant gene becoming fixed in a population [31 – 34]; models of defenses against cancer and epidemics [35, 36]; models of the evolution of cooperation [37 – 39]; and, tracking rumor sources and terrorists [40 - 42].


Evolutionary Dynamic Fixation Probability State Transition Matrix State Space Approach Circular Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433(7023), 312–316 (2005)CrossRefGoogle Scholar
  2. 2.
    Kauffman, S.A.: Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)Google Scholar
  3. 3.
    Barbosa, V.C., Donangelo, R., Sousa, S.R.: Network growth for enhanced natural selection. Physical Review E 80(2), 026115 (2009)Google Scholar
  4. 4.
    Birkholz, J.M., Bakhshi, R., Harige, R., van Steen, M., Groenewegen, P. (2012) Scalable analysis of socially informed network models. arXiv:1209.6615v1 (cs.SI) (September 28, 2012)Google Scholar
  5. 5.
    Chazelle, B. (2012) The dynamics of influence systems. arXiv:1204.3946 (nlin.AO) (April 17, 2012)Google Scholar
  6. 6.
    Díaz, J., Goldberg, L., Mertzios, G., Richerby, D., Serna, M., Spirakis, P.: Approximating fixation probabilities in the generalized Moran process. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), Kyoto, Japan. ACM (2012),
  7. 7.
    Ghanbarnejad, F., Klemm, K.: Impact of individual nodes in Boolean network dynamics. arXiv:1111/5334v1 (q-bio.MN) (November 22, 2011)Google Scholar
  8. 8.
    Mossel, E., Sly, A., Tamuz, O.: Strategic learning and the topology of social networks. arXiv:1209.5527 (cs.GT) (September 25, 2012)Google Scholar
  9. 9.
    Antal, T., Redner, S., Sood, V.: Evolutionary dynamics on degree-heterogeneous graphs. Physical Review Letters 96(18), 188104 (2006)CrossRefGoogle Scholar
  10. 10.
    Broom, M., Hadjichrysanthou, C., Rychtár, J., Stadler, B.T.: Two results on evolutionary processes on general non-directed graphs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, 2795–2798 (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Broom, M., Rychtár, J., Stadler, B.T.: Evolutionary dynamics on small-order graphs. Journal of Interdisciplinary Mathematic 12(2), 129–140 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Broom, M., Rychtár, J., Stadler, B.T.: Evolutionary dynamics on graphs – the effect of graph structure and initial placement on mutant spread. Journal of Statistical Theory and Practice 5(3), 369–381 (2011)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Champagnat, N., Lambert, A., Richard, M.: Birth and death processes with neutral mutations. arXiv:1209.6205.v1 (math.PR) (September 27, 2012)Google Scholar
  14. 14.
    Fu, F., Wang, L., Nowak, M.A., Hauert, C.: Evolutionary dynamics on graphs: Efficient methods for weak selection. Physical Review E 79(4), 046707 (2009)Google Scholar
  15. 15.
    Hauert, C.: Evolutionary dynamics. In: Skjeltorp, A.T., Belushkin, A.V. (eds.) Proceedings of the NATO Advanced Study Institute on Evolution From Cellular to Social Scales, pp. 11–44. Springer, Dordrecht (2008)CrossRefGoogle Scholar
  16. 16.
    Masuda, N., Ohtsuki, H.: Evolutionary dynamics and fixation probabilities in directed networks. New Journal of Physics 11, 033012 (2009)Google Scholar
  17. 17.
    Masuda, N.: Directionality of contact networks suppresses selection pressure in evolutionary dynamics. Journal of Theoretical Biology 258(2), 323–334 (2009)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Nowak, M.A., Tarnita, C.E., Antal, T.: Evolutionary dynamics in structured populations. Philosophical Transactions of the Royal Society B 365, 19–30 (2010)CrossRefGoogle Scholar
  19. 19.
    Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. PNAS 103(9), 3490–3494 (2006)CrossRefGoogle Scholar
  20. 20.
    Shakarian, P., Roos, P., Johnson, A.: A review of evolutionary graph theory with applications to game theory. Biosystems 107(2), 66–80 (2012)CrossRefGoogle Scholar
  21. 21.
    Sharkarian, P., Roos, P., Moores, G.: A novel analytical method for evolutionary graph theory problems. Biosystems (2012) (to appear)Google Scholar
  22. 22.
    Barbour, A.D., Reinert, G.: Asymptotic behavior of gossip processes and small world networks. arXiv:1202.5895v2 (math.PR) (February 28, 2012)Google Scholar
  23. 23.
    Coletti, C.F., Rodriguez, P.M., Schinazi, R.B.: A spatial stochastic model for rumor transmission. arXiv:1202.1491v1 (math.PR) (February 17, 2012)Google Scholar
  24. 24.
    Haeupler, B.: Simple, fast and deterministic gossip and rumor spreading. arXiv:1210.1193v1 (cs.DS) (October 3, 2012)Google Scholar
  25. 25.
    Shi, G., Johansson, M., Johansson, K.H.: How agreement and disagreement evolve over random dynamic networks. arXiv:1208.3398v1 (cs.SI) (August 16, 2012)Google Scholar
  26. 26.
    Banos, R.A., Borge-Holthoefer, J., Moreno, Y.: The role of hidden influentials in the diffusion of online information cascades. EJP Data Science 2(6) (2013)Google Scholar
  27. 27.
    Montanari, A., Saberi, A.: The spread of innovation in social networks. PNAS 107(47), 20196–20201 (2010)CrossRefGoogle Scholar
  28. 28.
    Tu, S.-Y., Sayed, A.H.: On the influence of informed agents on learning and adaptation over networks. arXiv:1203.1524 (cs.IT) (March 7, 2012)Google Scholar
  29. 29.
    Wang, Y., Xiao, G., Liu, J.: Dynamics of competing ideas in complex social networks. arXiv: 1112.5534v1 (2011)Google Scholar
  30. 30.
    Lang, J., De Sterck, H.: The Arab Spring: A simple compartmental model for the dynamics of a revolution. ArXiv:1210.1841v1 (math.DS) (October 5, 2012)Google Scholar
  31. 31.
    Barbosa, V.C., Donangelo, R., Souza, S.R.: Early appraisal of the fixa-tion probability in directed networks. Physical Review E8 2(4), 046114 (2010)Google Scholar
  32. 32.
    Broom, M., Rychtár, J.: An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proceedings of the Royal Society A 464, 2609–2627 (2008)CrossRefzbMATHGoogle Scholar
  33. 33.
    Taylor, P.D., Day, T., Wild, G.: From inclusive fitness to fixation probability in homogeneous structured populations. Journal of Theoretical Biology 249, 101–110 (2007)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Zhang, C., Wu, Y., Liu, W., Yang, X.: Fixation probabilities on complete star and bipartite digraphs. Discrete Dynamics in Nature and Society 940465 (2012)Google Scholar
  35. 35.
    Nowak, M.A., Michor, F., Iwasa, Y.: The linear process of somatic evolution. Proceedings of the National Academy of Science USA 100, 14966–14969 (2003)CrossRefGoogle Scholar
  36. 36.
    Simon, P.L., Taylor, M., Kiss, I.Z.: Exact epidemic models on graphs using graph automorphism driven lumping. Journal of Mathematical Biology 62(4), 479–508 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Chen, Y.-T.: Robustness of two simple rules for the evolution of cooperation on regular graphs. arXiv:1107.1513v1 (math.PR) (July 7, 2011)Google Scholar
  38. 38.
    Dong-Ping, Y., Hai, L., Chen-Xu, W., Jian-Wei, S.: Modeling Moran process with network dynamics for the evolution of cooperation. Chinese Physics Letters 26(6) (2009)Google Scholar
  39. 39.
    Taylor, P.D., Day, T., Wild, G.: Evolution of cooperation in a finite homogeneous graph. Nature 447, 469–472 (2007)CrossRefGoogle Scholar
  40. 40.
    Dong, W., Zhang, W., Tan, C.W.: Rooting out the rumor culprit from suspects. arXiv:1301.6312v1 (cs.SI) (January 27, 2013)Google Scholar
  41. 41.
    Shah, D., Zaman, T.R.: Rumors in a network: Who’s the culprit? IEEE Transactions on Information Theory 57, 5163–5181 (2011)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Shah, D., Zaman, T.R.: Finding rumor sources on random graphs. arXvi:1110.6230v2 (math.PR) (November 3, 2011)Google Scholar
  43. 43.
    Moran, P.: Random processes in genetics. Mathematical Proceedings of the Cambridge Philosophical Society 54, 60–71 (1958)CrossRefzbMATHGoogle Scholar
  44. 44.
    Nowak, M.A.: Evolutionary Dynamics. Harvard University Press, Cambridge (2006)zbMATHGoogle Scholar
  45. 45.
    Broom, M., Hadjichrysanthou, C., Rychtár, J., Stadler, B.T.: Evolutionary games on graphs and the speed of the evolutionary process. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, 1327–1346 (2009)CrossRefGoogle Scholar
  46. 46.
    Altrock, P.M., Traulsen, A.: Fixation times in evolutionary games under weak selection. New Journal of Physics 11, 013012 (2009)Google Scholar
  47. 47.
    Taylor, C., Iwasa, Y., Nowak, M.A.: A symmetry of fixation times in evolutionary dynamics. Journal of Theoretical Biology 243, 245–251 (2006)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Maruyama, T.: A simple proof that certain quantities are independent of the geographical structure of populations. Theoretical Population Biology 5(2), 148–154 (1974)CrossRefGoogle Scholar
  49. 49.
    Slatkin, M.: Fixation probabilities and fixation times in a subdivided population. Evolution 35, 477–488 (1981)CrossRefGoogle Scholar
  50. 50.
    Voorhees, B.: Birth-death fixation probabilities for structured populations. Proceedings of the Royal Society A 469, 2153 (2013)Google Scholar
  51. 51.
    Voorhees, B., Murray, A.: Fixation probabilities for simple digraphs. Proceedings of the Royal Society A 469, 2154 (2013)MathSciNetGoogle Scholar
  52. 52.
    Banerjee, A.: The Spectrum of the Graph Laplacian as a Tool for Analyzing Structure and Evolution of Networks. Dissertation (Dr. rer. nat.), University of Leipzig (2008)Google Scholar
  53. 53.
    Li, Y., Zhang, Z.: Digraph Laplacian and the degree of asymmetry. Internet Mathematics 8(4), 381–401 (2012)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Center for ScienceAthabasca UniversityAthabascaCanada

Personalised recommendations