On Some False Chaos Indicators When Analyzing Sampled Data

  • Petra AugustováEmail author
  • Zdeněk Beran
  • Sergej Čelikovský
Part of the Emergence, Complexity and Computation book series (ECC, volume 14)


The main aim of this paper is to demonstrate a possible risk of erroneous conclusions made throughout the process of the sampled data analysis. In particular, it will be shown that the false chaotic behavior of the sampled data may be incorrectly derived from the topological similarity with the already well known chaotic systems like that of Lorenz or from the positivity of the largest Lyapunov exponent. The possible faulty conclusions will be demonstrated using some examples that were recently published in various literature sources.


Lyapunov Exponent Chaotic Behavior Lorenz System Large Lyapunov Exponent Maximal Lyapunov Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  2. 2.
    Grosse-Erdmann, G.-K., Manguillot, A.P.: Linear Chaos. Springer (2011)Google Scholar
  3. 3.
    de Almeida, A.M.O.: Hamiltonian Systems: Chaos and quantization. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  4. 4.
    Oseledec, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–231 (1968)MathSciNetGoogle Scholar
  5. 5.
    Smale, S.: Differentiable dynamical systems. NBulletin of the American Mathematical Society 73(6), 747–817 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Devaney, R.: An introduction to chaotic dynamical systems. Addison–Wesley, New York (1989)zbMATHGoogle Scholar
  7. 7.
    Wiggins, S.: Chaos transport in dynamical systems. Springer, New York (1992)CrossRefGoogle Scholar
  8. 8.
    Gulick, D.: Encounters with chaos. McGraw-Hill, New York (1992)Google Scholar
  9. 9.
    Schuster, H.: Deterministic chaos. VCH, Weinheim (1988)Google Scholar
  10. 10.
    Kotik, K., Lectures, L.: on Dynamical Systems, Structural Stability and their Applications. World Scientific Publishing Co. Pte. Ltd. (1992)Google Scholar
  11. 11.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press (1997)Google Scholar
  12. 12.
    Shin, K., Hammond, J.K.: The instantaneous Lyapunov exponent and its application to chaotic dynamical systems. Journal of Sound and Vibration 218(3), 389–403 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Yalamova, R., Qi, L., Wang, L., Chen, Y., Mathews, S., Gong, G.: Detecting Chaos in Financial Time Series. Tech. Print, 1–9 (2006)Google Scholar
  14. 14.
    de Wijn, A.S.: Chaos in systems with many degrees of freedom. PhD thesis, Utrecht University (2004)Google Scholar
  15. 15.
    Özer, A.B., Akin, E.: Tools for detecting chaos. SAÜ Fen Bilimleri Enstitü sü Dergisi 9.Cilt, 1.Sayõ, 60–66 (2005)Google Scholar
  16. 16.
    Lindlay, D.H., Campbell, A.: A chaos approach to bankruptcy prediction. J. of Appl. Business Research 12(4), 1–9 (1996)Google Scholar
  17. 17.
    Mischaikow, K., Mrozek, M.: Chaos in the Lorenz equations: A computer-assisted proof. Bulletin AMS 32(1), 66–72 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Mischaikow, K., Mrozek, M.: Chaos in the Lorenz equations: A computer assisted proof. Part II: Details. Mathematics of Computation 67, 1023–1046 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Mischaikow, K., Mrozek, M., Szymczak, A.: Chaos in the Lorenz equations: A computer assisted proof. Part III: Classical Case Parameter Values. J. of Diff. Equations 169, 17–56 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Robinson, J.C.: Dimensions, Embeddings, and Attractors. Cambrigde University Press (2011)Google Scholar
  21. 21.
    Casdagli, M.: Chaos and Deterministic versus Stochastic Nonlinear Modeling. Santa Fe Institute, SFI Working Paper (July 029, 1991)Google Scholar
  22. 22.
    Puente, C.E., Obren, N., Sivakumar, B.: Chaos and stochasticity in deterministically generated multifractal structures. Fractals 10(1), 91–102 (2002)CrossRefGoogle Scholar
  23. 23.
    Neimark, Y.I., Landa, P.S.: Stochastic and chaotic oscillations. Mathematics and Its Applications Soviet Series, vol. 77. Springer, Netherlands (1992)CrossRefzbMATHGoogle Scholar
  24. 24.
    Hirata, Y., Judd, K.: Constructing dynamical systems with specified symbolic dynamics. Chaos: An Interdisciplinary Journal of Nonlinear Science 5(3), 033102-1–033102-6 (2005)Google Scholar
  25. 25.
    Kovács, G., Buchler, J.R.: Regular and irregular nonlinear pulsations in population II cepheid models. The Astrophysical Journal 334, 971–994 (1988)CrossRefGoogle Scholar
  26. 26.
    Matlab R2014a release. The MathWorks Inc., Natick (2014)Google Scholar
  27. 27.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Petra Augustová
    • 1
    Email author
  • Zdeněk Beran
    • 1
  • Sergej Čelikovský
    • 1
  1. 1.Institute of Information Theory and Automation, v.v.i.Academy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations