Chaos Driven PSO – On the Influence of Various CPRNG Implementations – An Initial Study

  • Michal PluhacekEmail author
  • Roman Senkerik
  • Ivan Zelinka
  • Donald Davendra
Part of the Emergence, Complexity and Computation book series (ECC, volume 14)


This paper presents deep study of the process of implementation of discrete chaotic maps as chaotic pseudo-random number generators (CPRNGs) for the needs of Particle Swarm Optimization (PSO) algorithm. There are several different ways for the CPRNG creation. This study addresses the main issues (including examples and results comparison) and may serve as a very useful resource for any future researchers.


Particle swarm optimization chaos PSO Evolutionary algorithm optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.): ANTS 2006. LNCS, vol. 4150. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Eberhart, R., Kennedy, J.: Swarm Intelligence. The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann (2001)Google Scholar
  4. 4.
    Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning, p. 41. Addison Wesley (1989) ISBN 0201157675Google Scholar
  5. 5.
    Storn, R., Price, R.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Shi, Y.H., Eberhart, R.C.: A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation, Anchorage Alaska, pp. 69–73 (1998)Google Scholar
  7. 7.
    Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Applied Soft Computing 11(4), 3658–3670 (2011) ISSN 1568-4946Google Scholar
  8. 8.
    Zelinka, I.: SOMA - self organizing migrating algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, ch. 7, vol. 33. Springer (2004) ISBN: 3-540-20167XGoogle Scholar
  9. 9.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(3), 289–304 (2003)CrossRefGoogle Scholar
  10. 10.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers & Mathematics with Applications 60(4), 1088–1104 (2010) ISSN 0898-1221Google Scholar
  11. 11.
    Araujo, E., Coelho, L.: Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system. Applied Soft Computing 8(4), 1354–1364 (2008)CrossRefGoogle Scholar
  12. 12.
    Alatas, B., Akin, E., Ozer, B.A.: Chaos embedded particle swarm optimization algorithms. Chaos, Solitons & Fractals 40(4), 1715–1734 (2009) ISSN 0960-0779Google Scholar
  13. 13.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Computers and Mathematics with Applications (2013), doi:10.1016/j.camwa.2013.01.016 (Article in press)Google Scholar
  14. 14.
    Pluhacek, M., Budikova, V., Senkerik, R., Oplatkova, Z., Zelinka, I.: On The Performance Of Enhanced PSO Algorithm With Lozi Chaotic Map – An initial Study. In: Proceedings of the 18th International Conference on Soft Computing, MENDEL 2012, pp. 40–45 (2012) ISBN 978-80-214-4540-6Google Scholar
  15. 15.
    Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, I.D.: Chaos PSO algorithm driven alternately by two different chaotic maps - An initial study. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2444–2449 (2013), doi:10.1109/CEC.2013.6557862, ISBN: 978-1-4799-0451-8Google Scholar
  16. 16.
    Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D.: New Adaptive Approach for Chaos PSO Algorithm Driven Alternately by Two Different Chaotic Maps – An Initial Study. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 77–87. Springer, Heidelberg (2013)Google Scholar
  17. 17.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)Google Scholar
  18. 18.
    Aziz-Alaoui, M.A., Robert, C., Grebogi, C.: Dynamics of a Hénon–Lozi-type map. Chaos, Solitons & Fractals 12(12), 2323–2341 (2001) ISSN 0960-0779Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michal Pluhacek
    • 1
    Email author
  • Roman Senkerik
    • 1
  • Ivan Zelinka
    • 1
  • Donald Davendra
    • 2
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceVŠB-Technical University of OstravaOstravaCzech Republic

Personalised recommendations