Cosmology 2.0: Convergent Implication of Cryodynamics and Global-c General Relativity

  • Otto E. RosslerEmail author
Part of the Emergence, Complexity and Computation book series (ECC, volume 14)


Two building blocks valid in two unrelated physical disciplines, statistical mechanics and general relativity, respectively, have convergent implications for cosmology. Firstly, cryodynamics – the recent new sister discipline to thermodynamics which applies to gases that are made up from mutually attractive rather than repulsive particles – is anti-entropic. Its statistical equilibrium is unstable rather than stable. This fact confirms Fritz Zwicky’s 1929 intuitive explanation of cosmological redshift as generated by the randomly distributed moving galaxies. Secondly, global-c general relativity – the unfinished global-c version of general relativity – implies that gravitational redshift is no longer accompanied by a proportional reduction in the speed of light c. Rather, the constant recession speed of the bottom of the Einstein rocketship relative to the tip implies a proportional local size increase that is optically masked from above. The new global c excludes cosmic expansion directly, since the global space expansion of the Big Bang involves superluminal speeds by definition. Thus the cosmological standard model is refuted regarding its main assumption of space expansion in two independent ways. The second pillar of the cosmological standard model besides expansion, the “cosmological background radiation,” now necessarily comes from a close-by source, the Milky Way galaxy’s halo. A Clifford-Einstein-Mandelbrot cosmos comes in sight along with an eternal cosmological metabolism (Heraclitus). Thus the non-experimental (observational) physical discipline – cosmology – presents itself in a new light.


Cosmological Standard model superluminality tired light deterministic statistical mechanics cryodynamics global-c Clifford Mandelbrot Heraclitus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rössler, O.E.: The new science of cryodynamics and its connection to cosmology. Complex Systems 20, 105–113 (2011); Open accessGoogle Scholar
  2. 2.
    Rössler, O.E.: Abraham-solution to Schwarzschild metric implies that CERN miniblack holes pose a planetary risk. In: Plath, P.J., Hass, E.C. (eds.) Vernetzte Wissenschaften: Crosslinks in Natural and Social Sciences, pp. 263–270. Logos Verlag, Berlin (2008), Google Scholar
  3. 3.
    Rossler, O.E.: Abraham-like return to constant c in general relativity: “ℜ-theorem” demonstrated in Schwarzschild metric. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics 2, 1–14 (2012), Preprint 2008:
  4. 4.
    Rossler, O.E.: Einstein’s equivalence principle has three further implications besides affecting time: T-L-M-Ch theorem (“Telemach”). African Journal of Mathematics and Computer Science Research 5, 44–47 (2012); Open accessGoogle Scholar
  5. 5.
    Diebner, H.H.: Time-dependent Deterministic Entropies and Dissipative Structures in exactly reversible Newtonian Molecular-dynamical Universes. Doctoral thesis. Verlag Ulrich Grauer, Stuttgart (1999) (in German)Google Scholar
  6. 6.
    Diebner, H.H., Rössler, O.E.: A deterministic entropy based on the instantaneous phase space volume. Z. Naturforsch. 53, 51–60 (1998); Open accessGoogle Scholar
  7. 7.
    Rössler, O.E., Sanayei, A., Zelinka, I.: Is hot fusion made feasible by the discovery of cryodynamics? In: Zelinka, I., Snasel, V., Rössler, O.E., Abraham, A., Corchado, E.S. (eds.) Nostradamus: Mod. Meth. of Prediction, Modeling. AISC, vol. 192, pp. 1–4. Springer, Heidelberg (2013), Google Scholar
  8. 8.
    Zwicky, F.: On the red shift of spectral lines through interstellar space. Proc. Nat. Acad. Sci. 15, 773–779 (1929)CrossRefzbMATHGoogle Scholar
  9. 9.
    Rössler, O.E., Fröhlich, D., Kleiner, N.: A time-symmetric Hubble-like law: light rays grazing randomly moving galaxies show distance proportional redshift. Z. Naturforsch. 58a, 807–809 (2003)Google Scholar
  10. 10.
    Sonnleitner, K.: StV4: A symplectic 4th order Störmer-Verlet Algorithm for Hamiltonian multi-particle Systems with two applied Examples (Gas, T-tube Configuration). PhD dissertation, University of Tubingen (2010), (in German)
  11. 11.
    Movassagh, R.: A time-asymmetric process in central force scatterings. 2010 (2013)Google Scholar
  12. 12.
    Sinai, Y.G.: Dynamical systems with elastic reflections. Russ. Math. Surv. 25, 137–189 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Rossler, O.E.: Rolling ball in breathing plane-tree alley paradigm. European Scientific Journal 9(27), 1–7 (2013); Open accessGoogle Scholar
  14. 14.
    Becker, R.: Theory of Heat. Springer, New York (1967)CrossRefGoogle Scholar
  15. 15.
    Einstein, A.: On the relativity principle and the conclusions drawn from it. Jahrbuch der Radioaktivität 4, 411–462, 458 (1907), English translation: (second-but-last page)
  16. 16.
    Einstein, A.: On the influence of gravity on the dispersion of light (Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes). Annalen der Physik 35, 898–908 (1911)CrossRefzbMATHGoogle Scholar
  17. 17.
    Einstein, A.: The foundation of the general theory of relativity (Die Grundlage der allgemeinen Relativitätstheorie). Annalen der Physik 49, 769–822 (1916)CrossRefzbMATHGoogle Scholar
  18. 18.
    Rossler, O.E.: Olemach theorem: angular-momentum conservation implies gravitational-redshift proportional change of length, mass and charge. European Scientific Journal 9(6), 38–45 (2013); Open accessGoogle Scholar
  19. 19.
    Rossler, O.E.: “Schwinger theorem”: ascending photons in equivalence principle imply globally constant c in general relativity. European Scientific Journal 10(3), 26–30 (2014); Open accessGoogle Scholar
  20. 20.
    Hawking, S.W.: Black hole explosions. Nature 248, 30–31 (1974)CrossRefGoogle Scholar
  21. 21.
    Oppenheimer, J.R., Snyder, H.: On continued gravitational attraction. Phys. Rev. 56, 455–459 (1939)CrossRefzbMATHGoogle Scholar
  22. 22.
    Abraham, R.: Chaostrophes, intermittency, and noise. In: Fischer, P., Smith, W.R. (eds.) Chaos, Fractals and Dynamics, pp. 3–22. Marcel Decker, New York (1985)Google Scholar
  23. 23.
    Rossler, O.E.: Complexity decomplexified: a list of 200+ new results encountered over 55 years. In: Zelinka, I., Sanayei, A., Zenil, H., Rössler, O.E. (eds.) How Nature Works, pp. 1–18. Springer, Heidelberg (2014), see # CXCI, CLXXVII, CLXXXVIGoogle Scholar
  24. 24.
    Blandford, R.D.: Active Galactic Nuclei. Springer, Heidelberg (2006)Google Scholar
  25. 25.
    Penzias, A.A., Wilson, R.W.: A measurement of excess antenna temperature at 4080 Mc/s. Astrophysical Journal Letters 142, 419–421 (1965)CrossRefGoogle Scholar
  26. 26.
    Guillaume, C.E.: La température de l’espace (The temperature of space). La Nature 24(2), 210–234 (1896); Quote: We conclude that the radiation of the stars alone would maintain the test particle, that we suppose might have been placed at different points in the sky, at a temperature of 338/60 = 5.6 abs.Google Scholar
  27. 27.
    Nernst, W.: Further examination of the assumption of a stationary state of the universe. Zeits. Phys. 106, 633–661 (1937); 2.8 K predicted (in German)Google Scholar
  28. 28.
    Born, M.: On the interpretation of Freundlich’s red-shift formula. Proc. Phys. Soc. A 67, 193–194 (1954)CrossRefzbMATHGoogle Scholar
  29. 29.
    Assis, A.K.T., Neves, M.C.D.: The redshift revisited. Astrophysics and Space Science 227, 13–24 (1995)CrossRefGoogle Scholar
  30. 30.
    Assis, A.K.T., Neves, M.C.D.: History of the 2.7 K temperature prior to Penzias and Wilson. Apeiron 2, 79–84 (1995)Google Scholar
  31. 31.
    ESA, Planck reveals an almost perfect universe (select page 2 there, which contains the decisive figure titled, Asymmetry and cold spot) (2013),
  32. 32.
    Interview with Saul Perlmutter, Brian P. Schmidt and Adam G. Riess (37 minutes),
  33. 33.
    Mandelbrot, B.B.: Fractal Geometry of Nature. Freeman, San Francisco (1977)Google Scholar
  34. 34.
    Sanayei, A., Rössler, O.E.: Chaotic Harmony – A Dialog about Physics, Complexity and Life. Springer, Heidelberg (2014), zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of TübingenTübingenGermany

Personalised recommendations