Lognormality Observed for Additive Processes: Application to Turbulence

  • Hideaki Mouri
Part of the Emergence, Complexity and Computation book series (ECC, volume 14)


The lognormal distribution has been observed across the natural and social sciences. It is always ascribed to a multiplicative process, i.e., a product of random variables, or equivalently to nonlinearity of the system, which always appears to be complex. However, we find that the lognormal distribution is also observable for a sum of random variables, i.e., an additive process in a linear system. The application is shown for large-scale fluctuations of fluid turbulence.


statistical description of complex systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Limpert, E., Stahel, W.A., Abbt, M.: Log-Normal Distributions across the Sciences: Keys and Clues. BioScience 51, 341–352 (2001)CrossRefGoogle Scholar
  2. 2.
    Mitzenmacher, M.: A Brief History of Generative Models for Power Law and Lognormal Distributions. Internet Math. 1, 226–251 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Kendall, M., Stuart, A.: The Advanced Theory of Statistics, 4th edn., vol. 1. Griffin, London (1977)zbMATHGoogle Scholar
  4. 4.
    Mouri, H.: Log-Normal Distribution from a Process that is not Multiplicative but is Additive. Phys. Rev. E 88, 042124 (2013)Google Scholar
  5. 5.
    Mouri, H., Hori, A., Takaoka, M.: Large-Scale Lognormal Fluctuations in Turbulence Velocity Fields. Phys. Fluids 21, 065107 (2009)Google Scholar
  6. 6.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)Google Scholar
  7. 7.
    Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. MIT Press, Cambridge (1975)Google Scholar
  8. 8.
    Mouri, H., Hori, A., Kawashima, Y., Hashimoto, K.: Statistical Mechanics and Large-Scale Velocity Fluctuations of Turbulence. Phys. Fluids 23, 125110 (2011)CrossRefGoogle Scholar
  9. 9.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon, London (1959)Google Scholar
  10. 10.
    Thorin, O.: On the Infinite Divisibility of the Lognormal Distribution. Scand. Actuarial J. 1977, 121–148 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fenton, L.F.: The Sum of Log-Normal Probability Distributions in Scatter Transmission Systems. IRE Trans. Commun. Syst. 8, 57–67 (1960)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hideaki Mouri
    • 1
  1. 1.Meteorological Research InstituteNagamineJapan

Personalised recommendations