Skip to main content

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 2380 Accesses

Abstract

Burgers’ equation is an interesting and non-linear model problem from which, many results can be extended to other hyperbolic systems, e.g., the Euler equations. In this chapter, a detailed uncertainty quantification analysis is performed for the Burgers’ equation; we employ a spectral representation of the solution in the form of polynomial chaos expansion. The equation is stochastic as a result of the uncertainty in the initial and boundary values. Galerkin projection results in a coupled, deterministic system of hyperbolic equations from which statistics of the solution can be determined. A well-posed stochastic Galerkin formulation is presented and a strongly stable numerical scheme is devised. The effect of missing data is investigated, in terms of both stability of the numerical scheme and accuracy of the numerical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpenter MH, Gottlieb D, Abarbanel S (1994) Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J Comput Phys 111(2):220–236. doi:http://dx.doi.org/10.1006/jcph.1994.1057

  2. Carpenter MH, Nordström J, Gottlieb D (1999) A stable and conservative interface treatment of arbitrary spatial accuracy. J Comput Phys 148(2):341–365. doi:http://dx.doi.org/10.1006/jcph.1998.6114

  3. Chen QY, Gottlieb D, Hesthaven JS (2005) Uncertainty analysis for the steady-state flows in a dual throat nozzle. J Comput Phys 204(1):378–398. doi:http://dx.doi.org/10.1016/j.jcp.2004.10.019

  4. Gottlieb D, Hesthaven JS (2001) Spectral methods for hyperbolic problems. J Comput Appl Math 128(1–2):83–131. doi:http://dx.doi.org/10.1016/S0377-0427(00)00510-0

  5. Gottlieb D, Xiu D (2008) Galerkin method for wave equations with uncertain coefficients. Commun Comput Phys 3(2):505–518

    MATH  MathSciNet  Google Scholar 

  6. Hou TY, Luo W, Rozovskii B, Zhou HM (2006) Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics. J Comput Phys 216(2):687–706. doi:http://dx.doi.org/10.1016/j.jcp.2006.01.008

  7. LeVeque RJ (2006) Numerical methods for conservation laws, 2nd edn. Birkhäuser Basel

    Google Scholar 

  8. Mattsson K, Svärd M, Nordström J (2004) Stable and accurate artificial dissipation. J Sci Comput 21(1):57–79

    Article  MATH  MathSciNet  Google Scholar 

  9. Nordström J (2006) Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J Sci Comput 29(3):375–404. doi:http://dx.doi.org/10.1007/s10915-005-9013-4

  10. Nordström J, Carpenter MH (1999) Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier-Stokes equations. J Comput Phys 148(2):621–645. doi:http://dx.doi.org/10.1006/jcph.1998.6133

  11. Nordström J, Carpenter MH (2001) High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates. J Comput Phys 173(1):149–174. doi:http://dx.doi.org/10.1006/jcph.2001.6864

  12. Pettersson P, Iaccarino G, Nordström J (2009) Numerical analysis of the Burgers’ equation in the presence of uncertainty. J Comput Phys 228:8394–8412. doi:10.1016/j.jcp.2009.08.012, http://dl.acm.org/citation.cfm?id=1621150.1621394

  13. Richtmyer RD, Morton KW (1967) Difference methods for initial-value problems, 1st edn. Interscience, New York

    MATH  Google Scholar 

  14. Xiu D, Karniadakis GE (2003) Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys 187(1):137–167. doi:10.1016/S0021-9991(03)00092-5, http://dx.doi.org/10.1016/S0021-9991(03)00092-5

  15. Xiu D, Karniadakis GE (2004) Supersensitivity due to uncertain boundary conditions. Int J Numer Meth Eng 61:2114–2138

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pettersson, M.P., Iaccarino, G., Nordström, J. (2015). Nonlinear Transport Under Uncertainty. In: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-10714-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10714-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10713-4

  • Online ISBN: 978-3-319-10714-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics