Abstract
In this chapter, we introduce spatial discretization schemes for systems of conservation laws. For smooth problems, summation-by-parts operators with weak enforcement of boundary conditions allow for the design of stable high-order accurate schemes. Summation by parts is the discrete equivalent of integration by parts and the matrix operators that are presented lead to energy estimates that in turn lead to provable stability. The discrete stability analysis follows naturally from the continuous analysis of well-posedness. For non-smooth problems, the need to accurately capture multiple solution discontinuities of hyperbolic stochastic Galerkin systems requires the introduction of shock-capturing methods. In this setting, we outline the MUSCL scheme with flux limiters and the HLL Riemann solver. We also briefly discuss how to add artificial dissipation and an issue regarding time integration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abarbanel S, Ditkowski A, Gustafsson B (2000) On error bounds of finite difference approximations to partial differential equations – temporal behavior and rate of convergence. J Sci Comput 15(1):79–116
Berg J, Nordström J (2011) Stable Robin solid wall boundary conditions for the Navier-Stokes equations. J Comput Phys 230:7519–7532
Carpenter MH, Gottlieb D, Abarbanel S (1994) Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J Comput Phys 111(2):220–236. doi:http://dx.doi.org/10.1006/jcph.1994.1057
Carpenter MH, Nordström J, Gottlieb D (1999) A stable and conservative interface treatment of arbitrary spatial accuracy. J Comput Phys 148(2):341–365. doi:http://dx.doi.org/10.1006/jcph.1998.6114
Einfeld B (1988) On Godunov-type methods for gas dynamics. SIAM J Numer Anal 25(2):294–318. doi:10.1137/0725021, http://dx.doi.org/10.1137/0725021
Gong J, Nordström J (2011) Interface procedures for finite difference approximations of the advection-diffusion equation. J Comput Appl Math 236(5):602–620
Gustafsson B, Kreiss HO, Oliger J (1995) Time dependent problems and difference methods. Wiley, New York
Harten A, Lax PD, van Leer B (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25(1):35–61. http://www.jstor.org/stable/2030019
Kreiss HO, Scherer G (1974) Finite element and finite difference methods for hyperbolic partial differential equations. In: Mathematical aspects of finite elements in partial differential equations. Academic, New York, pp 179–183
LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge
Mattsson K, Nordström J (2004) Summation by parts operators for finite difference approximations of second derivatives. J Comput Phys 199(2):503–540. doi:10.1016/j.jcp.2004.03.001, http://dx.doi.org/10.1016/j.jcp.2004.03.001
Mattsson K, Svärd M, Nordström J (2004) Stable and accurate artificial dissipation. J Sci Comput 21(1):57–79
Moin P (2010) Fundamentals of engineering numerical analysis. Cambridge University Press, New York. http://books.google.no/books?id=uvpwKK7ZVwMC
Nordström J (2006) Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J Sci Comput 29(3):375–404. doi:http://dx.doi.org/10.1007/s10915-005-9013-4
Nordström J (2007) Error bounded schemes for time-dependent hyperbolic problems. SIAM J Sci Comput 30(1):46–59. doi:10.1137/060654943
Nordström J, Carpenter MH (1999) Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier-Stokes equations. J Comput Phys 148(2):621–645. doi:http://dx.doi.org/10.1006/jcph.1998.6133
Nordström J, Carpenter MH (2001) High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates. J Comput Phys 173(1):149–174. doi:http://dx.doi.org/10.1006/jcph.2001.6864
Nordström J, Gong J, van der Weide E, Svärd M (2009) A stable and conservative high order multi-block method for the compressible Navier-Stokes equations. J Comput Phys 228(24):9020–9035
Nordström J, Svärd M (2005) Well-posed boundary conditions for the Navier-Stokes equations. SIAM J Numer Anal 43(3):1231–1255
Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43(2):357–372. doi:10.1016/0021-9991(81)90128-5, http://www.sciencedirect.com/science/article/B6WHY-4DD1MT3-6G/2/d95f5f5f3b2f002fe5d1fee93f0c6cf8
Sonday BE, Berry RD, Najm HN, Debusschere BJ (2011) Eigenvalues of the Jacobian of a Galerkin-projected uncertain ODE system. SIAM J Sci Comput 33:1212–1233. doi:http://dx.doi.org/10.1137/100785922
Strand B (1994) Summation by parts for finite difference approximations for d/dx. J Comput Phys 110(1):47–67. doi:http://dx.doi.org/10.1006/jcph.1994.1005
Svärd M, Carpenter M, Nordström J (2007) A stable high-order finite difference scheme for the compressible Navier-Stokes equations: far-field boundary conditions. J Comput Phys 225(1):1020–1038
Svärd M, Nordström J (2006) On the order of accuracy for difference approximations of initial-boundary value problems. J Comput Phys 218(1):333–352. doi:10.1016/j.jcp.2006.02.014, http://dx.doi.org/10.1016/j.jcp.2006.02.014
Svärd M, Nordström J (2008) A stable high-order finite difference scheme for the compressible Navier-Stokes equations: no-slip wall boundary conditions. J Comput Phys 227(10): 4805–4824
Svärd M, Nordström J (2014) Review of summation-by-parts schemes for initial-boundary-value problems. J Comput Phys 268:17–38
Sweby PR (1984) High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21(5):995–1011
Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 2nd edn. Springer, Berlin
Toro EF, Spruce M, Speares W (1994) Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4:25–34. http://dx.doi.org/10.1007/BF01414629
van Leer B (1979) Towards the ultimate conservative difference scheme. V – a second-order sequel to Godunov’s method. J Comput Phys 32:101–136. doi:10.1016/0021-9991(79)90145-1
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Pettersson, M.P., Iaccarino, G., Nordström, J. (2015). Numerical Solution of Hyperbolic Problems. In: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-10714-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-10714-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10713-4
Online ISBN: 978-3-319-10714-1
eBook Packages: EngineeringEngineering (R0)