Skip to main content

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 2457 Accesses

Abstract

In this chapter, we introduce spatial discretization schemes for systems of conservation laws. For smooth problems, summation-by-parts operators with weak enforcement of boundary conditions allow for the design of stable high-order accurate schemes. Summation by parts is the discrete equivalent of integration by parts and the matrix operators that are presented lead to energy estimates that in turn lead to provable stability. The discrete stability analysis follows naturally from the continuous analysis of well-posedness. For non-smooth problems, the need to accurately capture multiple solution discontinuities of hyperbolic stochastic Galerkin systems requires the introduction of shock-capturing methods. In this setting, we outline the MUSCL scheme with flux limiters and the HLL Riemann solver. We also briefly discuss how to add artificial dissipation and an issue regarding time integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abarbanel S, Ditkowski A, Gustafsson B (2000) On error bounds of finite difference approximations to partial differential equations – temporal behavior and rate of convergence. J Sci Comput 15(1):79–116

    Article  MATH  MathSciNet  Google Scholar 

  2. Berg J, Nordström J (2011) Stable Robin solid wall boundary conditions for the Navier-Stokes equations. J Comput Phys 230:7519–7532

    Article  MATH  MathSciNet  Google Scholar 

  3. Carpenter MH, Gottlieb D, Abarbanel S (1994) Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J Comput Phys 111(2):220–236. doi:http://dx.doi.org/10.1006/jcph.1994.1057

  4. Carpenter MH, Nordström J, Gottlieb D (1999) A stable and conservative interface treatment of arbitrary spatial accuracy. J Comput Phys 148(2):341–365. doi:http://dx.doi.org/10.1006/jcph.1998.6114

  5. Einfeld B (1988) On Godunov-type methods for gas dynamics. SIAM J Numer Anal 25(2):294–318. doi:10.1137/0725021, http://dx.doi.org/10.1137/0725021

  6. Gong J, Nordström J (2011) Interface procedures for finite difference approximations of the advection-diffusion equation. J Comput Appl Math 236(5):602–620

    Article  MATH  MathSciNet  Google Scholar 

  7. Gustafsson B, Kreiss HO, Oliger J (1995) Time dependent problems and difference methods. Wiley, New York

    MATH  Google Scholar 

  8. Harten A, Lax PD, van Leer B (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25(1):35–61. http://www.jstor.org/stable/2030019

  9. Kreiss HO, Scherer G (1974) Finite element and finite difference methods for hyperbolic partial differential equations. In: Mathematical aspects of finite elements in partial differential equations. Academic, New York, pp 179–183

    Google Scholar 

  10. LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  11. Mattsson K, Nordström J (2004) Summation by parts operators for finite difference approximations of second derivatives. J Comput Phys 199(2):503–540. doi:10.1016/j.jcp.2004.03.001, http://dx.doi.org/10.1016/j.jcp.2004.03.001

  12. Mattsson K, Svärd M, Nordström J (2004) Stable and accurate artificial dissipation. J Sci Comput 21(1):57–79

    Article  MATH  MathSciNet  Google Scholar 

  13. Moin P (2010) Fundamentals of engineering numerical analysis. Cambridge University Press, New York. http://books.google.no/books?id=uvpwKK7ZVwMC

  14. Nordström J (2006) Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J Sci Comput 29(3):375–404. doi:http://dx.doi.org/10.1007/s10915-005-9013-4

  15. Nordström J (2007) Error bounded schemes for time-dependent hyperbolic problems. SIAM J Sci Comput 30(1):46–59. doi:10.1137/060654943

    Article  MATH  MathSciNet  Google Scholar 

  16. Nordström J, Carpenter MH (1999) Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier-Stokes equations. J Comput Phys 148(2):621–645. doi:http://dx.doi.org/10.1006/jcph.1998.6133

  17. Nordström J, Carpenter MH (2001) High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates. J Comput Phys 173(1):149–174. doi:http://dx.doi.org/10.1006/jcph.2001.6864

  18. Nordström J, Gong J, van der Weide E, Svärd M (2009) A stable and conservative high order multi-block method for the compressible Navier-Stokes equations. J Comput Phys 228(24):9020–9035

    Article  MATH  MathSciNet  Google Scholar 

  19. Nordström J, Svärd M (2005) Well-posed boundary conditions for the Navier-Stokes equations. SIAM J Numer Anal 43(3):1231–1255

    Article  MATH  MathSciNet  Google Scholar 

  20. Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43(2):357–372. doi:10.1016/0021-9991(81)90128-5, http://www.sciencedirect.com/science/article/B6WHY-4DD1MT3-6G/2/d95f5f5f3b2f002fe5d1fee93f0c6cf8

  21. Sonday BE, Berry RD, Najm HN, Debusschere BJ (2011) Eigenvalues of the Jacobian of a Galerkin-projected uncertain ODE system. SIAM J Sci Comput 33:1212–1233. doi:http://dx.doi.org/10.1137/100785922

  22. Strand B (1994) Summation by parts for finite difference approximations for d/dx. J Comput Phys 110(1):47–67. doi:http://dx.doi.org/10.1006/jcph.1994.1005

  23. Svärd M, Carpenter M, Nordström J (2007) A stable high-order finite difference scheme for the compressible Navier-Stokes equations: far-field boundary conditions. J Comput Phys 225(1):1020–1038

    Article  MATH  MathSciNet  Google Scholar 

  24. Svärd M, Nordström J (2006) On the order of accuracy for difference approximations of initial-boundary value problems. J Comput Phys 218(1):333–352. doi:10.1016/j.jcp.2006.02.014, http://dx.doi.org/10.1016/j.jcp.2006.02.014

  25. Svärd M, Nordström J (2008) A stable high-order finite difference scheme for the compressible Navier-Stokes equations: no-slip wall boundary conditions. J Comput Phys 227(10): 4805–4824

    Article  MATH  MathSciNet  Google Scholar 

  26. Svärd M, Nordström J (2014) Review of summation-by-parts schemes for initial-boundary-value problems. J Comput Phys 268:17–38

    Article  MathSciNet  Google Scholar 

  27. Sweby PR (1984) High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21(5):995–1011

    Article  MATH  MathSciNet  Google Scholar 

  28. Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  29. Toro EF, Spruce M, Speares W (1994) Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4:25–34. http://dx.doi.org/10.1007/BF01414629

  30. van Leer B (1979) Towards the ultimate conservative difference scheme. V – a second-order sequel to Godunov’s method. J Comput Phys 32:101–136. doi:10.1016/0021-9991(79)90145-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pettersson, M.P., Iaccarino, G., Nordström, J. (2015). Numerical Solution of Hyperbolic Problems. In: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-10714-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10714-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10713-4

  • Online ISBN: 978-3-319-10714-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics