Skip to main content

Part of the book series: SpringerBriefs in Pharmaceutical Science & Drug Development ((BRIEFSPSDD))

Abstract

Recent advances in lipid nanoparticle research suggest that colloidal carriers have great potential for administration of drug molecules. The use of physiological lipids in their matrices presents the advantages of biocompatibility and reduced toxicity. The lipids are known to influence drug encapsulation, particle morphology and drug release properties, as do other excipients such as surfactants, water and drug molecules. The rationale behind using lipid nanoparticles is the improved delivery of poorly water-soluble drugs. In addition, the lipid nanoparticles are expected to protect the drug from harsh biological conditions. The stability of lipid nanoparticles and the incorporated drug ensures improved drug efficacy. This chapter focuses on the physicochemical stability of lipid nanoparticle dispersions. The dispersion stability of pharmaceutical products is usually achieved by either of two stabilization mechanisms—electrostatic and/or steric stabilization. The destabilization mechanism, though undesirable when formulations are on shelf, can play a crucial role to in vivo applications where limited destabilisation is required for controlled drug release. A number of techniques such as water elimination or addition of specific stabilizers have been employed to optimize stabilization of lipid nanoparticle formulations. Although different measures have been taken to achieve the desired physicochemical stability, appropriate use of characterization tools to detect any destabilization in the system is necessary and will be discussed briefly here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelwahed W, Degobert G, Stainmesse S, Fessi H (2006) Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv Drug Deliver Rev 58(15):1688–1713

    Article  CAS  Google Scholar 

  • AraĂşjo J, Gonzalez E, Egea M, Garcia M, Souto E (2009) Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomed Nanotechnol 5(4):394–401

    Article  Google Scholar 

  • AraĂşjo J, Nikolic S, Egea M, Souto E, Garcia M (2011) Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloid Surf B 88(1):150–157

    Article  Google Scholar 

  • Attama A, Reichl S, MĂĽller-Goymann C (2008) Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int J Pharm 355(1–2):307–313

    Article  CAS  PubMed  Google Scholar 

  • Awad T, Helgason T, Kristbergsson K, Decker E, Weiss J, McClements D (2008) Effect of cooling and heating rates on polymorphic transformations and gelation of triplamitin solid lipid nanoparticle (SLN) suspensions. Food Biophys 3:155–162

    Article  Google Scholar 

  • Blasi P, Schoubben A, Romano G, Giovagnoli S, Di Michele A, Ricci M (2013) Lipid nanoparticles for brain targeting II. Technological characterization. Colloid Surf B. 110:130–137

    Article  CAS  Google Scholar 

  • Bunjes H, Koch M, Westesen K (2000) Effect of particle size on colloidal solid triglycerides. Langmuir 16(12):5234–5241

    Article  Google Scholar 

  • Bunjes H, Siekmann B (2005) Manufacture, characterization, and applications of solid lipid nanoparticles as drug delivery systems. Microencapsulation: methods and industrial applications. Drugs and the pharmaceutical sciences. CRC Press, New York, pp 213–268

    Google Scholar 

  • Bunjes H, Unruh T (2007) Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliv Rev 59(6):379–402

    Article  CAS  PubMed  Google Scholar 

  • Bunjes H, Westesen K, Koch M (1996) Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int J Pharm 129(1):159–173

    Article  CAS  Google Scholar 

  • Cavalli R, Gasco M, Chetoni P, Burgalassi S, Saettone M (2002) Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 238(1–2):241–245

    Article  CAS  PubMed  Google Scholar 

  • Choi K-O, Aditya N, Ko S (2014) Effect of aqueous pH and electrolyte concentration on structure, stability and flow behavior of non-ionic surfactant based solid lipid nanoparticles. Food Chem 147:239–244

    Article  CAS  PubMed  Google Scholar 

  • Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS Pharm Sci Tech 12(1):62–76

    Article  CAS  Google Scholar 

  • Deraguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Phys Chim: USSR 14:633–662

    Google Scholar 

  • Freitas C, MĂĽller R (1998) Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int J Pharm 168(2):221–229

    Article  CAS  Google Scholar 

  • Freitas C, MĂĽller R (1999) Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur J Pharm Biopharm 47(2):125–132

    Article  CAS  PubMed  Google Scholar 

  • Gambinossi F, Chanana M, Mylon S, Ferri J (2014) Stimulus-responsive Au@(MeO2MAx-co-OEGMAy) nanoparticles stabilized by non-DLVO interactions: implications of ionic strength and copolymer (x:y) fraction on aggregation kinetics. Langmuir 30(7):1748–1757

    Article  CAS  PubMed  Google Scholar 

  • Garad S, Wang J, Joshi Y, Panicucci R (2010) Preclinical development for suspensions. In: Kulshreshtha A, Singh O, Wall G (eds) Pharmaceutical suspensions—from pharmaceutical development to manufacturing. Springer, New York, pp 127–176

    Google Scholar 

  • Han F, Li S, Yin R, Liu H, Xu L (2008) Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers. Colloid Surf A 315(1–3):210–216

    Article  CAS  Google Scholar 

  • Hao J, Wang X, Bi Y, Teng Y, Wang J, Li F et al (2014) Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloid Surf B 114:111–120

    Article  CAS  Google Scholar 

  • Helgason T, Awad T, Kristbergsson K, Decker E, McClements D, Weiss J (2009a) Impact of surfactant properties on oxidative stability of β-carotene encapsulated within solid lipid nanoparticles. J Agr Food Chem 57(17):8033–8040

    Article  CAS  Google Scholar 

  • Helgason T, Awad T, Kristbergsson K, McClements D, Weiss J (2008) Influence of polymorphic transformations on Gelation of tripalmitin solid lipid nanoparticle suspensions. J Am Oil Chem Soc 85(6):501–511

    Article  CAS  Google Scholar 

  • Helgason T, Awad T, Kristbergsson K, McClements D, Weiss J (2009b) Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J Colloid Interface Sci 334(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Heurtault B, Saulnier P, Pech B, Proust J-E, Benoit J-P (2003) Physico-chemical stability of colloidal lipid particles. Biomaterials 24(23):4283–4300

    Article  CAS  PubMed  Google Scholar 

  • Jaafar-Maalej C, Elaissari A, Fessi H (2012) Lipid-based carriers: manufacturing and applications for pulmonary route. Expert Opin Drug Deliv 9(9):1111–1127

    Article  CAS  PubMed  Google Scholar 

  • Jee J-P, Lim S-J, Park J-S, Kim C-K (2006) Stabilization of all-trans retinol by loading lipophilic antioxidants in solid lipid nanoparticles. Eur J Pharm Biopharm 63(2):134–139

    Article  CAS  PubMed  Google Scholar 

  • Jenning V, Gysler A, Schäfer-Korting M, Gohla S (2000a) Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm 49(3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Jenning V, Schäfer-Korting M, Gohla S (2000b) Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Controlled Release 66(2–3):115–126

    Article  CAS  Google Scholar 

  • Jenning V, ThĂĽnemann A, Gohla S (2000c) Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm 199(2):167–177

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Shen J, Zhang D, Duan C, Liu G, Zheng D et al (2012) In vitro and in vivo evaluation of oridonin-loaded long circulating nanostructured lipid carriers. Int J Biol Macromol 50(3):523–529

    Article  CAS  PubMed  Google Scholar 

  • Joshi M, MĂĽller R (2009) Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 71(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Kim C-J (2004) Surface chemistry and colloids. Advanced pharmaceutics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kovacevic A, MĂĽller R, Savic S, Vuleta G, Keck C (2014) Solid lipid nanoparticles (SLN) stabilized with polyhydroxy surfactants: preparation, characterization and physical stability investigation. Colloid Surf A 444:15–25

    Article  CAS  Google Scholar 

  • Kovacevic A, Savic S, Vuleta G, MĂĽller R, Keck C (2011) Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. Int J Pharm 406(1–2):163–172

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Randhawa J (2013) Preparation and characterization of paliperidone loaded solid lipid nanoparticles. Colloid Surf B 102:562–568

    Article  CAS  Google Scholar 

  • Lawler P, Dimick P (2002) Crystallization and polymorphism of fats. In: Akoh C, Min D (eds) Food lipids: chemistry, nutrition and biotechnology. Marcel Dekker, New York, pp 275–300

    Google Scholar 

  • Liu D, Ge Y, Tang Y, Yuan Y, Zhang Q, Li R et al (2010) Solid lipid nanoparticles for transdermal delivery of diclofenac sodium: preparation, characterization and in vitro studies. J Microencapsul 27(8):726–734

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Liu Z, Wang L, Zhang C, Zhang N (2011) Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloid Surf B 85(2):262–269

    Article  CAS  Google Scholar 

  • Liu J, Gong T, Fu H, Wang C, Wang X, Chen Q et al (2008) Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm 356(1–2):333–344

    Article  CAS  PubMed  Google Scholar 

  • Lukowski G, Kasbohm J, Pflegel P, Illing A, Wulff H (2000) Crystallographic investigation of cetylpalmitate solid lipid nanoparticles. Int J Pharm 196(2):201–205

    Article  CAS  PubMed  Google Scholar 

  • Mengersen F, Bunjes H (2012) Chemical stability of phospholipid-stabilized supercooled smectic cholesteryl myristate nanoparticle. Eur J Pharm Biopharm 82(2):262–271

    Article  CAS  PubMed  Google Scholar 

  • Mitri K, Shegokar R, Gohla S, Anselmi C, MĂĽller R (2011) Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance. Int J Pharm 414(1–2):267–275

    Article  CAS  PubMed  Google Scholar 

  • Muchow M, Maincent P, MĂĽller R (2008) Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for oral drug delivery. Drug Dev Ind Pharm 34(12):1394–1405

    Article  CAS  PubMed  Google Scholar 

  • MĂĽller R, Freitas C, zur MĂĽhlen A, Mehnert W (1996) Solid lipid nanoparticles (SLN) for controlled drug delivery. Eur J Pharm Sci 4(Suppl 1(0)):S75

    Google Scholar 

  • MĂĽller R, Keck C (2004) Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113(1–3):151–170

    Article  PubMed  Google Scholar 

  • MĂĽller R, Radtke M, Wissing S (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliver Rev 54:S131–S155

    Article  Google Scholar 

  • Nik A, Langmaid S, Wright A (2012) Nonionic surfactant and interfacial structure impact crystallinity and stability of β-carotene loaded lipid nanodispersions. J Agric Food Chem 60(16):4126–4135

    Article  CAS  PubMed  Google Scholar 

  • Nutan M, Reddy I (2009) General Principles of Suspensions. In: Kulshreshtha A, Singh O, Wall G (eds) Pharmaceutical suspensions—from pharmaceutical development to manufacturing. Springer, New York

    Google Scholar 

  • Ohki S, Ohshima H (1999) Interaction and aggregation of lipid vesicles (DLVO theory versus modified DLVO theory). Colloid Surf B 14(1–4):27–45

    Article  CAS  Google Scholar 

  • Ohshima H, Miyagishima A, Kurita T, Makino Y, Iwao Y, Sonobe T et al (2009) Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution. Int J Pharm 377(1–2):180–184

    Article  CAS  PubMed  Google Scholar 

  • Rabinow B (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discovery 3(9):785–796

    Article  CAS  Google Scholar 

  • Radomska-Soukharev A (2007) Stability of lipid excipients in solid lipid nanoparticles. Adv Drug Deliver Rev 59(6):411–418

    Article  CAS  Google Scholar 

  • Saupe A, Gordon K, Rades T (2006) Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. Int J Pharm 314(1):56–62

    Article  CAS  PubMed  Google Scholar 

  • Scheler S (2012) Micro- and nano-sizing of poorly soluble drugs by grinding techniques. In: Douroumis D, Fahr A (eds) Drug delivery strategies for poorly water-soluble drugs. Wiley, West Sussex

    Google Scholar 

  • Shah R, Malherbe F, Eldridge D, Palombo E, Harding I (2014) Physicochemical characterization of solid lipid nanoparticles (SLNs) prepared by a novel microemulsion technique. J Colloid Interface Sci 428:286–294

    Article  CAS  PubMed  Google Scholar 

  • Silva A, Amaral M, González-Mira E, Santos D, Ferreira D (2012) Solid lipid nanoparticles (SLN)—based hydrogels as potential carriers for oral transmucosal delivery of risperidone: Preparation and characterization studies. Colloid Surf B 93:241–248

    Article  CAS  Google Scholar 

  • Silva A, González-Mira E, GarcĂ­a M, Egea M, Fonseca J, Silva R et al (2011) Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloid Surf B 86(1):158–165

    Article  CAS  Google Scholar 

  • Soares S, Fonte P, Costa A, Andrade J, Seabra V, Ferreira D et al (2013) Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Int J Pharm 456(3):370–381

    Article  CAS  PubMed  Google Scholar 

  • Souto E, Almeida A, MĂĽller R (2007) Lipid nanoparticles (SLN, NLC) for cutaneous drug delivery: structure, protection and skin effects. J Biomed Nanotechnol 3(4):317–331

    Article  CAS  Google Scholar 

  • Souto E, Wissing S, Barbosa C, MĂĽller R (2004) Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur J Pharm Biopharm 58(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2013) Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov Food Sci Emerg 19:29–43

    Article  CAS  Google Scholar 

  • Tan S, Billa N (2014) Lipid effects on expulsion rate of amphotericin B from solid lipid nanoparticles. AAPS Pharm Sci Technol 15(2):287–295

    Article  CAS  Google Scholar 

  • Teeranachaideekul V, MĂĽller R, Junyaprasert V (2007) Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)—effects of formulation parameters on physicochemical stability. Int J Pharm 340(1–2):198–206

    Article  CAS  PubMed  Google Scholar 

  • Tsai M-J, Wu P-C, Huang Y-B, Chang J-S, Lin C-L, Tsai Y-H et al (2012) Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting. Int J Pharm 423(2):461–470

    Article  CAS  PubMed  Google Scholar 

  • Van Oss C, Good R, Chaudhury M (1986) The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J Colloid Interface Sci 111(2):378–390

    Article  Google Scholar 

  • Varshosaz J, Eskandari S, Tabbakhian M (2012) Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydr Polym 88(4):1157–1163

    Article  CAS  Google Scholar 

  • Verwey E (1947) Theory of the stability of lyophobic colloids. J Phys Colloid Chem 51(3):631–636

    Article  CAS  PubMed  Google Scholar 

  • Vivek K, Reddy H, Murthy R (2007) Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS Pharm Sci Technol 8(4):16–24

    Article  Google Scholar 

  • Walstra P (1993) Principles of emulsion formation. Chem Eng Sci 48(2):333–349

    Article  CAS  Google Scholar 

  • Westesen K, Bunjes H (1995) Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int J Pharm 115(1):129–131

    Article  CAS  Google Scholar 

  • Westesen K, Bunjes H, Koch M (1997) Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release 48(2):223–236

    Article  CAS  Google Scholar 

  • Wong H, Wu X, Bendayan R (2012) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliver Rev 64:686–700

    Article  CAS  Google Scholar 

  • Wu L, Zhang J, Watanabe W (2011) Physical and chemical stability of drug nanoparticles. Adv Drug Deliver Rev 63(6):456–469

    Article  CAS  Google Scholar 

  • Yang W, Peters J, Williams R III (2008) Inhaled nanoparticles—a current review. Int J Pharm 356(1–2):239–247

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann E, MĂĽller R, Mäder K (2000) Influence of different parameters on reconstitution of lyophilized SLN. Int J Pharm 196(2):211–213

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan Shah .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Shah, R., Eldridge, D., Palombo, E., Harding, I. (2015). Physicochemical Stability. In: Lipid Nanoparticles: Production, Characterization and Stability. SpringerBriefs in Pharmaceutical Science & Drug Development. Springer, Cham. https://doi.org/10.1007/978-3-319-10711-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10711-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10710-3

  • Online ISBN: 978-3-319-10711-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics