Skip to main content

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications - ENUMATH 2013

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 103))

  • 3266 Accesses

Abstract

Least-squares finite element methods are motivated, beside others, by the fact that in contrast to standard mixed finite element methods, the choice of the finite element spaces is not subject to the LBB stability condition and the corresponding discrete linear system is symmetric and positive definite. We intend to benefit from these two positive attractive features, on one hand, to use different types of elements representing the physics as for instance the jump in the pressure for multiphase flow and mass conservation and, on the other hand, to show the flexibility of the geometric multigrid methods to handle efficiently the resulting linear systems. With the aim to develop a solver for non-Newtonian problems, we introduce the stress as a new variable to recast the Navier-Stokes equations into first order systems of equations. We numerically solve S-V-P, Stress-Velocity-Pressure, formulation of the incompressible Navier-Stokes equations based on the least-squares principles using different types of finite elements of low as well as higher order. For the discrete systems, we use a conjugate gradient (CG) solver accelerated with a geometric multigrid preconditioner. In addition, we employ a Krylov space smoother which allows a parameter-free smoothing. Combining this linear solver with the Newton linearization results in a robust and efficient solver. We analyze the application of this general approach, of using different types of finite elements, and the efficiency of the solver, geometric multigrid, throughout the solution of the prototypical benchmark configuration ‘flow around cylinder’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Bochev, M. Gunzburger, Least-squares finite element methods (Springer, New York, 2009)

    MATH  Google Scholar 

  2. J.J. Heys, T.A. Manteuffel, S.F. McCormick, L.N. Olson, Algebraic multigrid for higher-order finite elements. J. Comput. Phys. 204(2), 520–532 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Köster, A. Ouazzi, F. Schieweck, S. Turek, P. Zajac, New robust nonconforming finite elements of higher order. Appl. Numer. Math. 62, 166–184 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Nickaeen, A. Ouazzi, S. Turek, Newton multigrid least-squares FEM for the V-V-P formulation of the Navier-Stokes equations. J. Comput. Phys. 256, 416–427 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Ouazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ouazzi, A., Nickaeen, M., Turek, S., Waseem, M. (2015). Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds) Numerical Mathematics and Advanced Applications - ENUMATH 2013. Lecture Notes in Computational Science and Engineering, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-319-10705-9_64

Download citation

Publish with us

Policies and ethics