On the Local Mesh Size of Nitsche’s Method for Discontinuous Material Parameters

  • Mika JuntunenEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 103)


We propose Nitsche’s method for discontinuous parameters that takes the local mesh sizes of the non-matching meshes carefully into account. The method automatically adapts to the changing material parameters and mesh sizes. With continuous parameters, the method compares to the classical Nitsche’s method. With large discontinuity, the method approaches assigning Dirichlet boundary conditions with Nitsche’s method.


Material Parameter Bilinear Form Discontinuous Galerkin Method Trace Inequality Approximate Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Annavarapu, M. Hautefeuille, J.E. Dolbow, A robust Nitsche’s formulation for interface problems. Comput. Methods Appl. Mech. Eng. 225–228, 44–54 (2012)CrossRefMathSciNetGoogle Scholar
  2. 2.
    N. Barrau, R. Becker, E. Dubach, R. Luce, A robust variant of NXFEM for the interface problem. Comptes Rendus Math. 350(15–16), 789–792 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    R. Becker, P. Hansbo, R. Stenberg, A finite element method for domain decomposition with non-matching grids. Math. Model. Numer. Anal. 37(2), 209–225 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 2nd edn. (Springer, New York, 2002)Google Scholar
  5. 5.
    E. Burman, P. Zunino, A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 44(4), 1612–1638 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications, vol. 69 (Springer, Berlin/Heidelberg, 2012)Google Scholar
  7. 7.
    M. Dryja, On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients. Comput. Methods Appl. Mech. Eng. 3(1), 76–85 (2003)zbMATHMathSciNetGoogle Scholar
  8. 8.
    A. Ern, A. Stephansen, A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods. J. Comput. Math. 26(4), 488–510 (2008)zbMATHMathSciNetGoogle Scholar
  9. 9.
    A. Ern, A.F. Stephansen, P. Zunino, A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29(2), 235–256 (2008)CrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Juntunen, R. Stenberg, Nitsche’s method for general boundary conditions. Math. Comput. 78(267), 1353–1374 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    T.A. Laursen, M.A. Puso, J. Sanders, Mortar contact formulations for deformable–deformable contact: past contributions and new extensions for enriched and embedded interface formulations. Comput. Methods Appl. Mech. Eng. 205–208, 3–15 (2012)CrossRefMathSciNetGoogle Scholar
  12. 12.
    R. Stenberg, On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63(1–3), 139–148 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    _________________________________________________ , Mortaring by a method of J.A. Nitsche, in Computational Mechanics, Buenos Aires, 1998 (Centro Internac. Métodos Numér. Ing., Barcelona, 1998)Google Scholar
  14. 14.
    P. Zunino, L. Cattaneo, C.M. Colciago, An unfitted interface penalty method for the numerical approximation of contrast problems. Appl. Numer. Math. 61(10), 1059–1076 (2011)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Mathematics and Systems AnalysisAalto University School of ScienceAaltoFinland

Personalised recommendations