Advertisement

Finite Element-Boundary Element Methods for Dielectric Relaxation Spectroscopy

  • Stephan C. KramerEmail author
  • Gert Lube
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 103)

Abstract

We apply the finite element-boundary element method (FEM-BEM) for a smooth approximation of a curvilinear interior interface in a finite domain. This avoids unphysical singularities at the interface due to a piece-wise linear boundary. This type of FEM-BEM coupling arises from simulating the biophysical problem of dielectric relaxation spectroscopy of solvated proteins. Boundary elements convert the linear Poisson problem due to the intramolecular charges of the protein into a boundary condition at the protein-solvent interface. The electro-diffusion of ions in the solvent is modeled as a set of convection-diffusion equations. The spatial distributions of the ion species induce an electrostatic potential which solves a Poisson problem. The gradient of the potential constitutes the convective flow field. The link to experiments is given by computing the stationary ionic current through the system. This requires Robin-type boundary conditions at the electrodes.

Keywords

Boundary Integral Equation Exclude Volume Effect Conformational Sampling Boundary Integral Operator Dielectric Relaxation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin/New York, 2003)CrossRefGoogle Scholar
  2. 2.
    A. Knocks, H. Weingärtner, The dielectric spectrum of ubiquitin in aqueous solution. J. Phys. Chem. B 105(17), 3635–3638 (2001)CrossRefGoogle Scholar
  3. 3.
    D. Ban et al., Kinetics of conformational sampling in ubiquitin. Angew. Chem. Int. Ed. 50(48), 11437–11440 (2011)CrossRefGoogle Scholar
  4. 4.
    C. Kleanthous, Protein-Protein Recognition (Oxford University Press, Oxford/New York, 2000)Google Scholar
  5. 5.
    B. Janssen, G. Kanschat, Adaptive multilevel methods with local smoothing for H 1- and H curl-conforming high order finite element methods. SIAM J. Sci. Comput. 33(4), 2095–2114 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    W. Bangerth, R. Hartmann, G. Kanschat, deal.II – a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)Google Scholar
  7. 7.
    W. Schmickler, E. Santos, Interfacial Electrochemistry (Springer, New York, 2010)CrossRefGoogle Scholar
  8. 8.
    S.C. Kramer, Cuda-based scientific computing – tools and selected applications, Ph.D. thesis, Georg-August Universität Göttingen, 2012Google Scholar
  9. 9.
    C.L. Bajaj, G. Xu, Q. Zhang, A fast variational method for the construction of resolution adaptive C 2-smooth molecular surfaces. Comput. Methods Appl. Mech. Eng. 198(21), 1684–1690 (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    S. Rjasanow, O. Steinbach, The Fast Solution of Boundary Integral Equations (Springer, New York/London, 2007)zbMATHGoogle Scholar
  11. 11.
    C. Johnson, J. Nédélec, On the coupling of boundary integral and finite element methods. Math. Comput. 35(152), 1063–1079 (1980)CrossRefzbMATHGoogle Scholar
  12. 12.
    O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems. Texts in Applied Mathematics (Springer, New York/London, 2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für Numerische und Angewandte Mathematik der Universität GöttingenGöttingenGermany
  2. 2.Max-Planck Institut für biophysikalische ChemieGöttingenGermany

Personalised recommendations