Reduced Basis Numerical Homogenization Method for the Multiscale Wave Equation

Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 103)

Abstract

A reduced basis numerical homogenization method for the wave equation in heterogeneous media is presented. The method is based on a macroscopic discretization of the physical domain with input data recovered from microscopic problems solved by using reduced basis techniques. A priori error analysis is discussed and the convergence rates are verified by numerical experiments that also illustrate the performance of the method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM. SIAM Multiscale Model. Simul. 4(2), 447–459 (2005)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    ______________ , A priori and a posteriori error analysis for numerical homogenization: a unified framework. Ser. Contemp. Appl. Math. CAM 16, 280–305 (2011)Google Scholar
  3. 3.
    A. Abdulle, Y. Bai, Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems. J. Comput. Phys. 231(21), 7014–7036 (2012)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    ________________________________________________________________________ , Adaptive reduced basis finite element heterogeneous multiscale method. Comput. Methods Appl. Mech. Eng. 257, 201–220 (2013)Google Scholar
  5. 5.
    A. Abdulle, M. Grote, Finite element heterogeneous multiscale method for the wave equation. SIAM Multiscale Model. Simul. 9(2), 766–792 (2011)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    M. Barrault, Y. Maday, N. Nguyen, A. Patera, An ‘empirical interpolation method’: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris Ser.I 339, 667–672 (2004)Google Scholar
  7. 7.
    A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978)MATHGoogle Scholar
  8. 8.
    S. Boyaval, Reduced-basis approach for homogenization beyond the periodic setting. Multiscale Model. Simul. 7(1), 466–494 (2008)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    S. Brahim-Otsmane, G.A. Francfort, F. Murat, Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 71(3), 197–231 (1992)MATHMathSciNetGoogle Scholar
  10. 10.
    P. Ciarlet, Basic Error Estimates for Elliptic Problems. Handbook of Numerical Analysis, vol. 2 (Elsevier Science/North-Holland, Amsterdam/New York, 1991)Google Scholar
  11. 11.
    W. E, B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)Google Scholar
  12. 12.
    V. Jikov, S. Kozlov, O. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, Berlin/Heidelberg, 1994)CrossRefGoogle Scholar
  13. 13.
    J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications. Travaux et recherches mathématiques, vol. 1 (Dunod, Paris, 1968)Google Scholar
  14. 14.
    F. Murat, L. Tartar, H-convergence, topics in the mathematical modeling of composite materials. Progress. Nonlinear Differ. Equ. Appl. 31, 21–43 (1997)MathSciNetGoogle Scholar
  15. 15.
    G. Rozza, D. Huynh, A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15, 229–275 (2008)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ANMC, Section de MathématiquesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations