Homogenization of the One-Dimensional Wave Equation

  • Thi Trang Nguyen
  • Michel LencznerEmail author
  • Matthieu Brassart
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 103)


We present a method for two-scale model derivation of the periodic homogenization of the one-dimensional wave equation in a bounded domain. It allows for analyzing the oscillations occurring on both microscopic and macroscopic scales. The novelty reported here is on the asymptotic behavior of high frequency waves and especially on the boundary conditions of the homogenized equation. Numerical simulations are reported.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    S. Brahim-Otsmane, G. Francfort, F. Murat, Correctors for the homogenization of the wave and heat equations. J. de mathématiques pures et appliquées 71(3), 197–231 (1992)zbMATHMathSciNetGoogle Scholar
  3. 3.
    M. Brassart, M. Lenczner, A two-scale model for the wave equation with oscillating coefficients and data. Comptes Rendus Math. 347(23), 1439–1442 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    J. Casado-Díaz, J. Couce-calvo, F. Maestre, J.D. Martín Gómez, Homogenization and correctors for the wave equation with periodic coefficients. Math. Models Methods Appl. Sci. 24, 1–46 (2013)Google Scholar
  5. 5.
    W. Chen, J. Fish, A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales. J. Appl. Mech. 68(2), 153–161 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    J. Fish, W. Chen, Space-time multiscale model for wave propagation in heterogeneous media. Comput. Methods Appl. Mech. Eng. 193(45), 4837–4856 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    G.A. Francfort, F. Murat, Oscillations and energy densities in the wave equation. Commun. Partial Differ. Equ. 17(11–12), 1785–1865 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    A. Lamacz, Dispersive effective models for waves in heterogeneous media. Math. Models Methods Appl. Sci. 21(09), 1871–1899 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    T.T. Nguyen, M. Lenczner, M. Brassart, Homogenization of the spectral equation in one-dimension (2013). arXiv preprint arXiv:1310.4064Google Scholar
  10. 10.
    F. Santosa, W.W. Symes, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51(4), 984–1005 (1991)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thi Trang Nguyen
    • 1
  • Michel Lenczner
    • 1
    Email author
  • Matthieu Brassart
    • 2
  1. 1.FEMTO-STBesançonFrance
  2. 2.Laboratoire de Mathématiques de BesançonBesançonFrance

Personalised recommendations