Advertisement

Multiscale Adaptive Method for Stokes Flow in Heterogenenous Media

  • Assyr Abdulle
  • Ondrej Budáč
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 103)

Abstract

We present a multiscale micro-macro method for the Stokes problem in heterogeneous media. The macroscopic method discretizes a Darcy problem on a coarse mesh with permeability data recovered from solutions of Stokes problems around quadrature points. The accuracy of both the macro and the micro solvers is controlled by appropriately coupled a posteriori error indicators, while the total cost of the multiscale method is independent of the pore size. Two and three-dimensional numerical experiments illustrate the capabilities of the adaptive method.

Keywords

Porous Medium Posteriori Error Stokes Problem Posteriori Error Estimate Quadrature Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4(2), 447–459 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    ______________ , A priori and a posteriori error analysis for numerical homogenization: a unified framework. Ser. Contemp. Appl. Math. CAM 16, 280–305 (2011)Google Scholar
  3. 3.
    A. Abdulle, O. Budáč, An Adaptive Finite Element Heterogeneous Multiscale Method for the Stokes Problem in Porous Media. MATHICSE Report 41.2013, École Polytechnique Fédérale de Lausanne, 2013Google Scholar
  4. 4.
    A. Abdulle, W.E, B. Engquist, E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012)Google Scholar
  5. 5.
    A. Abdulle, A. Nonnenmacher, Adaptive finite element heterogeneous multiscale method for homogenization problems. Comput. Methods Appl. Mech. Eng. 200(37–40), 2710–2726 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    ___________________________ , A posteriori error estimates in quantities of interest for the finite element heterogeneous multiscale method. Numer. Methods Partial Differ. Equ. 29(5), 1629–1656 (2013)Google Scholar
  7. 7.
    G. Allaire, Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal. 2(3), 203–222 (1989)zbMATHMathSciNetGoogle Scholar
  8. 8.
    S. Alyaev, E. Keilegavlen, J.M. Nordbotten, Analysis of Control Volume Heterogeneous Multiscale Methods for Single Phase Flow in Porous Media. Multiscale Model. Simul. 12(1), 335–363 (2014)CrossRefMathSciNetGoogle Scholar
  9. 9.
    D.N. Arnold, A. Mukherjee, L. Pouly, Locally adapted tetrahedral meshes using bisection. SIAM J. Sci. Comput. 22(2), 431–448 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    D.L. Brown, Y. Efendiev, V.H. Hoang, An efficient hierarchical multiscale finite element method for Stokes equations in slowly varying media. Multiscale Model. Simul. 11(1), 30–58 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4 (North-Holland, Amsterdam/New York, 1978)Google Scholar
  12. 12.
    W. E, B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)Google Scholar
  13. 13.
    W. E, B. Engquist, X. Li, W. Ren, E. Vanden-Eijnden, Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2(3), 367–450 (2007)Google Scholar
  14. 14.
    C. Geuzaine, J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    E. Marušić-Paloka, A. Mikelić, An error estimate for correctors in the homogenization of the Stokes and Navier-Stokes equations in a porous medium. Boll. Unione Mat. Ital. 10(3), 661–671 (1996)zbMATHGoogle Scholar
  16. 16.
    A. Nonnenmacher, Adaptive finite element methods for multiscale partial differential equations, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, 2011Google Scholar
  17. 17.
    M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems. Multiscale Model. Simul. 4(1), 88–114 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    J. Peters, V. Reichelt, A. Reusken, Fast iterative solvers for discrete Stokes equations. SIAM J. Sci. Comput. 27(2), 646–666 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    E. Sánchez-Palencia, Non-homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127 (Springer, Berlin/New York, 1980)Google Scholar
  20. 20.
    C. Sandström, F. Larsson, K. Runesson, H. Johansson, A two-scale finite element formulation of Stokes flow in porous media. Comput. Methods Appl. Mech. Eng. 261–262, 96–104 (2013)CrossRefGoogle Scholar
  21. 21.
    L. Tartar, Incompressible Fluid Flow in a Porous Medium—Convergence of the Homogenization Process, Appendix of [19], pp. 368–377 (1979)Google Scholar
  22. 22.
    R. Verfürth, A posteriori error estimators for the Stokes equations. Numer. Math. 55(3), 309–325 (1989)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ANMC, Section de MathématiquesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations