Advertisement

Tensor Formats Based on Subspaces are Positively Invariant Sets for Laplacian-Like Dynamical Systems

  • Antonio Falcó
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 103)

Abstract

In this note, we show that the set of tensors with bounded rank are positively invariant sets for linear evolution equations defined by Laplacian-like operators. In consequence, once a trajectory of the system enters to this class of set, it will never leave it again.

Keywords

Banach Space Proper Orthogonal Decomposition Continuous Semigroup Tensor Format Tensor Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newtonian Fluid Mech. 139, 153–176 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representations. J. Non-Newtonian Fluid Mech. 144, 98–121 (2007)zbMATHGoogle Scholar
  3. 3.
    A. Falcó, W. Hackbusch, On minimal subspaces in tensor representations. Found. Comput. Math. 12(6), 765–803 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    A. Falcó, W. Hackbusch, A. Nouy, Geometric structures in tensor representations, Preprint 9/2013 at Max Planck Institute for Mathematics in the Sciences, 2013Google Scholar
  5. 5.
    A. Falcó, L. Hilario, N. Montés, M.C. Mora, Numerical strategies for the Galerkin-Proper generalized decomposition method. Math. Comput. Model. 57(7–8), 1694–1702 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Falcó, A. Nouy, A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach. J. Math. Anal. Appl. 376, 469–480 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    L. Figueroa, E. Süli, Greedy approximation of high-dimensional Ornstein-Uhlenbeck operators with unbounded drift. Found. Comput. Math. 12(5), 573–623 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus (Springer, Berlin/New York, 2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    A. Lozinski, R.G. Owen, T.N. Phillips, The Langevin and the Fokker–Plank Equation in Polymer Rheology, Handbook of Numerical Analysis, ed. by P.G. Ciarlet. Numerical Methods for Non-Newtonian Fluids, vol. XVI (Elsevier, Amsterdam, 2011), pp. 211–303Google Scholar
  10. 10.
    V. de Silva, L.-H. Lim, Tensor rank and ill-posedness of the best low-rank approximation problem. SIAM J Matrix Anal. Appl. 30(3), 1084–1127 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Departamento de Ciencias, Físicas, Matemáticas y de la ComputaciónUniversidad CEU Cardenal Herrera, San Bartolomé 55ValenciaSpain

Personalised recommendations