Skip to main content

Variational Principles for Eigenvalues of Nonlinear Eigenproblems

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications - ENUMATH 2013

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 103))

Abstract

Variational principles are very powerful tools when studying self-adjoint linear operators on a Hilbert space \(\mathcal{H}\). Bounds for eigenvalues, comparison theorems, interlacing results and monotonicity of eigenvalues can be proved easily with these characterizations, to name just a few. In this paper we consider generalization of these principles to families of linear, self-adjoint operators depending continuously on a scalar in a real interval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Y.S. Abramov, Variational principles for nonlinear eigenvalue problems. Funct. Anal. Appl. 7, 317–318 (1973)

    Article  MathSciNet  Google Scholar 

  2. Y.S. Abramov, Linear operators and spectral theory: pencils of waveguide type and related extremal problems. J. Math. Sci. 64, 1278–1288 (1993)

    Article  Google Scholar 

  3. E.M. Barston, A minimax principle for nonoverdamped systems. Int. J. Eng. Sci. 12, 413–421 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Binding, D. Eschwé, H. Langer, Variational principles for real eigenvalues of self-adjoint operator pencils. Integr. Equ. Oper. Theory 38, 190–206 (2000)

    Article  MATH  Google Scholar 

  5. R. Courant, Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik. Math. Z. 7, 1–57 (1920)

    Article  MATH  MathSciNet  Google Scholar 

  6. R.J. Duffin, A minimax theory for overdamped networks. J. Rat. Mech. Anal. 4, 221–233 (1955)

    MATH  MathSciNet  Google Scholar 

  7. J. Eisenfeld, E.H. Rogers, Elementary localization theorems for nonlinear eigenproblems. J. Math. Anal. Appl. 48, 325–340 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Eschwé, M. Langer. Variational principles of eigenvalues of self-adjoint operator functions. Integr. Equ. Oper. Theory 49, 287–321 (2004)

    Article  MATH  Google Scholar 

  9. E. Fischer, Über quadratische Formen mit reellen Koeffizienten. Monatshefte für Math. und Phys. 16, 234–249 (1905)

    Article  MATH  Google Scholar 

  10. R.O. Griniv, T.A. Mel’nik, On the singular Rayleigh functional. Math. Notes 60, 97–100 (1996)

    Google Scholar 

  11. K.P. Hadeler, Variationsprinzipien bei nichtlinearen Eigenwertaufgaben. Arch. Ration. Mech. Anal. 30, 297–307 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  12. K.P. Hadeler, Nonlinear eigenvalue problems, in Numerische Behandlung von Differentialgleichungen ed. by R. Ansorge, L. Collatz, G. Hämmerlin, W. Törnig, ISNM 27 (Birkhäuser, Stuttgart, 1975), pp. 111–129

    Google Scholar 

  13. M. Hasanov, An approximation method in the variational theory of the spectrum of operator pencils. Acta Appl. Math. 71, 117–126 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Hasanov, The spectra of two–parameter quadratic operator pencils. Math. Comput. Model. 54, 742–755 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Langer, Über stark gedämpfte Scharen im Hilbertraum. J. Math. Mech. 17, 685–705 (1968)

    MATH  MathSciNet  Google Scholar 

  16. A.S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils (AMS Translations of Mathematical Monographs, Providence, 1988)

    MATH  Google Scholar 

  17. T.A. Mel’nik, S.A. Nazarov, The asymptotics of the solution to the Neumann spectral problem in a domain of the “dense-comb” type. J. Math. Sci. 85, 2326–2345 (1997)

    Google Scholar 

  18. H. Poincaré, Sur les equations aux dérivées partielles de la physique mathématique. Am. J. Math. 12, 211–294 (1890)

    Article  MATH  Google Scholar 

  19. L. Rayleigh, Some general theorems relating to vibrations. Proc. Lond. Math. Soc. 4, 357–368 (1873)

    Google Scholar 

  20. E.H. Rogers, A minimax theory for overdamped systems. Arch. Ration. Mech. Anal. 16, 89–96 (1964)

    Article  MATH  Google Scholar 

  21. E.H. Rogers, Variational properties of nonlinear spectra. J. Math. Mech. 18, 479–490 (1968)

    MATH  MathSciNet  Google Scholar 

  22. R.E.L. Turner, Some variational principles for nonlinear eigenvalue problems. J. Math. Anal. Appl. 17, 151–160 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  23. R.E.L. Turner, A class of nonlinear eigenvalue problems. J. Func. Anal. 7, 297–322 (1968)

    Article  Google Scholar 

  24. H. Voss, A maxmin principle for nonlinear eigenvalue problems with application to a rational spectral problem in fluid–solid vibration. Appl. Math. 48, 607–622 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. H. Voss, A minmax principle for nonlinear eigenproblems depending continuously on the eigenparameter. Numer. Linear Algebra Appl. 16, 899–913 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Voss, B. Werner, A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems. Math. Meth. Appl. Sci. 4, 415–424 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  27. H.F. Weinberger, On a nonlinear eigenvalue problem. J. Math. Anal. Appl. 21, 506–509 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  28. A. Weinstein, W.F. Stenger, Methods of Intermediate Problems for Eigenvalues (Academic, New York, 1972)

    MATH  Google Scholar 

  29. B. Werner, Das Spektrum von Operatorenscharen mit verallgemeinerte Rayleighquotienten. Arch. Ration. Mech. Anal. 42, 223–238 (1971)

    Article  MATH  Google Scholar 

  30. H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71, 441–479 (1912)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Voss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Voss, H. (2015). Variational Principles for Eigenvalues of Nonlinear Eigenproblems. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds) Numerical Mathematics and Advanced Applications - ENUMATH 2013. Lecture Notes in Computational Science and Engineering, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-319-10705-9_30

Download citation

Publish with us

Policies and ethics