Advertisement

Adaptive Numerical Simulation of Dynamic Contact Problems

  • Mirjam Walloth
  • Rolf Krause
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 103)

Abstract

We present a new approach for the space-time adaptive solution of dynamic contact problems. By combining ideas from the recently introduced residual-type a posteriori error estimator for static contact problems (Krause et al., An efficient and reliable residual-type a posteriori error estimator for the Signorini problem. Numer. Math. (2014), DOI: 10.1007/s00211-014-0655-8) and the novel discretization scheme with local impact detection (Krause and Walloth, A family of space-time connecting discretization schemes with local impact detection for elastodynamic contact problems. Comput. Methods Appl. Mech. Eng. 200:3425–3438, 2011), a discretization method is constructed which is able to detect and resolve local nonsmooth effects at the contact boundary in space and time. Numerical results in 3D illustrate our theoretical findings.

Keywords

Variational Inequality Contact Problem Contact Stress Dynamic Contact Contact Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Bastian, K. Birken, S. Lang, N. Neuss, H. Rentz-Reichert, C. Wieners, UG – A flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997)CrossRefzbMATHGoogle Scholar
  2. 2.
    P. Deuflhard, R Krause, S. Ertel, A contact–stabilized Newmark method for dynamical contact problems. Int. J. Numer. Methods Eng. 73, 1274–1290 (2008)Google Scholar
  3. 3.
    C. Hager, S. Hüeber, B. Wohlmuth, A stable energy conserving approach for frictional contact problems based on quadrature formulas. Int. J. Numer. Methods Eng. 73, 205–225 (2008)CrossRefzbMATHGoogle Scholar
  4. 4.
    P. Hild, S. Nicaise, Residual a posteriori error estimators for contact problems in elasticity. Math. Model. Numer. Anal. 41, 897–923 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    H. Khenous, P. Laborde, Y. Renard, Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A Solids 27, 918–932 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    R. Kornhuber, R. Krause, Adaptive multigrid methods for Signorini’s problem in linear elasticity. Comput. Vis. Sci. 4, 9–20 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    R. Krause, Monotone multigrid methods for Signorini’s problem with friction, PhD thesis, Freie Universität Berlin, 2000Google Scholar
  8. 8.
    R. Krause, M. Walloth, A family of space-time connecting discretization schemes with local impact detection for elastodynamic contact problems. Comput. Methods Appl. Mech. Eng. 200, 3425–3438 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    R. Krause, M. Walloth, Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme. Appl. Numer. Math. 62, 1393–1410 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    R. Krause, A. Veeser, M. Walloth, An efficient and reliable residual-type a posteriori error estimator for the Signorini problem. Numer. Math. (2014), DOI: 10.1007/s00211-014-0655-8Google Scholar
  11. 11.
    T. Laursen, V. Chawla, Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Eng. 40, 863–886 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    M. Walloth, Adaptive numerical simulation of contact problems: Resolving local effects at the contact boundary in space and time, PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2012Google Scholar
  13. 13.
    A. Weiss, B. Wohlmuth, A posteriori error estimator and error control for contact problems. Math. Comput. 78, 1237–1267 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    B. Wohlmuth, An a posteriori error estimator for two-body contact problems on non-matching meshes. SIAM J. Sci. Comput. 33, 25–45 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institute of Computational ScienceUniversity of LuganoLuganoSwitzerland

Personalised recommendations