Advertisement

Reliable a Posteriori Error Estimation for Plane Problems in Cosserat Elasticity

  • Maxim FrolovEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 103)

Abstract

Functional type a posteriori error estimates are proposed for approximate solutions to plane problems arising in the Cosserat theory of elasticity. Estimates are reliable under quite general assumptions and are explicitly applicable not only to approximations possessing the Galerkin orthogonality property. For numerical justification of the approach, the lowest order Arnold-Boffi-Falk approximation is implemented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Altenbach, H. Altenbach, V.A. Eremeyev, On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    D.N. Arnold, D. Boffi, R.S. Falk, Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42(6), 2429–2451 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    E. Cosserat, F. Cosserat, Theorie des corps deformables (A. Hermann et Fils. VI, Paris, 1909)Google Scholar
  4. 4.
    V.A. Eremeyev, L.P. Lebedev, H. Altenbach, Foundations of Micropolar Mechanics. SpringerBriefs in Applied Sciences and Technology, Continuum Mechanics (Springer, Berlin, 2013)CrossRefzbMATHGoogle Scholar
  5. 5.
    M.E. Frolov, Application of functional error estimates with mixed approximations to plane problems of linear elasticity. Comput. Math. Math. Phys. 53(7), 1000–1012 (2013)CrossRefMathSciNetGoogle Scholar
  6. 6.
    A.R. Hadjesfandiari, G.F. Dargush, Boundary element formulation for plane problems in couple stress elasticity. Int. J. Numer. Methods Eng. 89(5), 618–636 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    J. Jeong, P. Neff, Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions. Math. Mech. Solids 15(1), 78–95 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    O. Mali, P. Neittaanmäki, S. Repin, Accuracy Verification Methods. Theory and Algorithms. Computational Methods in Applied Sciences, vol. 32 (Springer, Dordrecht, 2014)Google Scholar
  9. 9.
    G.A. Maugin, A historical perspective of generalized continuum mechanics, in Mechanics of Generalized Continua. Advanced Structured Materials, vol. 7 (Springer, Berlin/Heidelberg, 2011), pp. 3–19Google Scholar
  10. 10.
    N.F. Morozov, Mathematical Issues in the Theory of Cracks [in Russian] (Nauka, Moscow, 1984)Google Scholar
  11. 11.
    P. Neittaanmäki, S.I. Repin, Reliable Methods for Computer Simulation—Error Control and a Posteriori Estimates (Elsevier, Amsterdam, 2004)zbMATHGoogle Scholar
  12. 12.
    M. Ostoja-Starzewski, I. Jasiuk, Stress invariance in planar Cosserat elasticity. Proc. R. Soc. Lond. Ser. A 451(1942), 453–470 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    S.I. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comput. 69(230), 481–500 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    ______________________________________________________ , A Posteriori Estimates for Partial Differential Equations (Walter de Gruyter, Berlin/New York, 2008)Google Scholar
  15. 15.
    S. Repin, M. Frolov, Estimates for deviations from exact solutions to plane problems in the Cosserat theory of elasticity. Probl. Math. Anal. 62, 153–161 (2011). Trans. J. Math. Sci. 181(2), 281–291 (2012)Google Scholar
  16. 16.
    O. Sadovskaya, V. Sadovskii, Mathematical Modeling in Mechanics of Granular Materials. Advanced Structured Materials, vol. 21 (Springer, Berlin, 2012)Google Scholar
  17. 17.
    M.A. Wheel, A control volume-based finite element method for plane micropolar elasticity. Int. J. Numer. Methods Eng. 75(8), 992–1006 (2008)CrossRefzbMATHGoogle Scholar
  18. 18.
    H.W. Zhang, H. Wang, P. Wriggers, B.A. Schrefler, A finite element model for contact analysis of multiple Cosserat bodies. Comput. Mech. 36(6), 444–458 (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Applied MathematicsSt. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations