Estimates of Constants in Boundary-Mean Trace Inequalities and Applications to Error Analysis

  • Sergey RepinEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 103)


We discuss Poincaré type inequalities for functions with zero mean values on the whole boundary of a Lipschitz domain or on a measurable part of the boundary. For some basic domains (rectangles, quadrilaterals, and right triangles) exact constants in these inequalities has been found in Nazarov and Repin (ArXiv Ser Math Anal, 2012, arXiv:1211.2224). We shortly discuss two examples, which show that the estimates can be helpful for quantitative analysis of PDEs. In the first example, we deduce estimates of modeling errors generated by simplification (coarsening) of a boundary value problem. The second example presents a new form of the functional type a posteriori estimate that provides fully guaranteed and computable bounds of approximation errors. Constants in Poincaré type inequalities enter these estimates.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bebendorf, A note on the Poincaré inequality for convex domains. Z. Anal. Anwend. 22(4), 751–756 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    C.R. Dohrmann, A. Klawonn, O.B. Widlund, Domain decomposition for less regular subdomains: overlapping Schwarz in two dimensions. SIAM J. Numer. Anal. 46(4), 2153–2168 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    V.G. Maz’ja, Classes of domains and imbedding theorems for function spaces. Sov. Math. Dokl. 1, 882–885 (1960)Google Scholar
  4. 4.
    A. Nazarov, S. Repin, Exact constants in Poincaré type inequalities for functions with zero mean boundary traces. ArXiv Ser. Math. Anal. (2012). arXiv:1211.2224Google Scholar
  5. 5.
    S. Nicaise, A posteriori error estimations of some cell-centered finite volume methods. SIAM J. Numer. Anal. 43(4), 1481–1503 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    L.E. Payne, H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    G.V. Pencheva, M. Vohralik, M.F. Wheeler, T. Wildey, Robust a posteriori error control and adaptivity for multiscale, multinumerics, and mortar coupling. SIAM J. Numer. Anal. 51(1), 526–554 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    H. Poincaré, Sur les équations aux deŕiveés partielles de la physique mathematique. Am. J. Math. 12, 211–294 (1890)CrossRefzbMATHGoogle Scholar
  9. 9.
    H. Poincaré, Sur les équations de la physique mathematique. Rend. Circ. Mat. Palermo, 8, 57–156 (1894)CrossRefzbMATHGoogle Scholar
  10. 10.
    S. Repin, A Posteriori Error Estimates for Partial Differential Equations (Walter de Gruyter, Berlin, 2008)CrossRefGoogle Scholar
  11. 11.
    M.F. Wheeler, I. Yotov, A posteriori error estimates for the mortar mixed finite element method. SIAM J. Numer. Anal. 43(3), 1021–1042 (2005)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.V. A. Steklov Institute of MathematicsSt. PetersburgRussia
  2. 2.University of JyväskyläJyväskyläFinland

Personalised recommendations