Mimetic Finite Difference Method for Shape Optimization Problems

  • P. F. Antonietti
  • Nadia Bigoni
  • Marco VeraniEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 103)


We test the performance of the Mimetic Finite Difference method applied to a wide class of shape optimization problems. Adaptive strategies based on heuristic error indicators are also considered to validate the effectiveness of the numerical scheme.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.F. Antonietti, L. Beirão da Veiga, C. Lovadina, M. Verani, Hierarchical a posteriori error estimators for the mimetic discretization of elliptic problems. SIAM J. Numer. Anal. 51(1), 654–675 (2012)CrossRefGoogle Scholar
  2. 2.
    L. Beirão da Veiga, V. Gyrya, K. Lipnikov, G. Manzini, Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228(19), 7215–7232 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    F. Brezzi, A. Buffa, K. Lipnikov, Mimetic finite differences for elliptic problems. M2AN Math. Model. Numer. Anal. 43(2), 277–295 (2009)Google Scholar
  4. 4.
    F. Brezzi, K. Lipnikov, M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005) (electronic)Google Scholar
  5. 5.
    M.C. Delfour, J.-P. Zolésio, Shapes and Geometries. Advances in Design and Control, vol. 22, 2nd edn. (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011)Google Scholar
  6. 6.
    G. Doǧan, P. Morin, R.H. Nochetto, M. Verani, Discrete gradient flows for shape optimization and applications. Comput. Methods Appl. Mech. Eng. 196(37–40), 3898–3914 (2007)Google Scholar
  7. 7.
    P. Morin, R. Nochetto, M. Pauletti, M. Verani, Adaptive finite element method for shape optimization. ESAIM Control Optim. Calc. Var. 18(4), 1122–1149 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    O. Pironneau, On optimum profiles in Stokes flow. J. Fluid Mech. 59, 117–128 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    T. Tiihonen, Shape optimization and trial methods for free boundary problems. RAIRO Modél. Math. Anal. Numér. 31(7), 805–825 (1997)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MOX-Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly

Personalised recommendations