Position Refinement

  • Martin Werner


There is a lot of possibility to improve service quality by extending the notion of a positioning system. Basic positioning systems assign locations to measurements. Advanced systems can use time-series information for refinement including Weighted Least Squares, Recursive Least Squares, Kalman filtering, and particle filtering. The main results and algorithms get a closed explanation in this chapter.


Covariance Matrix Kalman Filter Navigation System Particle Filter Extended Kalman Filter 


  1. 1.
    Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002). doi:10.1109/78.978374CrossRefGoogle Scholar
  2. 2.
    Chen, Z.: Bayesian filtering: from Kalman filters to particle filters, and beyond. Statistics 182(1), 1–69 (2003)CrossRefGoogle Scholar
  3. 3.
    Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-gaussian bayesian state estimation. In: Proceedings of the Institute of Electrical Engineering, vol. 140, pp. 107–113 (1993)Google Scholar
  4. 4.
    Groves, P.D.: Principles of GNSS, inertial, and multisensor integrated navigation systems. Artech House, London (2013)MATHGoogle Scholar
  5. 5.
    Hofmann-Wellenhof, B., Legat, K., Wieser, M.: Navigation – Principles of Positioning and Guidance. Springer, Wien (2003)Google Scholar
  6. 6.
    Sorenson, H.W.: Least-squares estimation: from gauss to Kalman. IEEE Spectr. 7(7), 63–68 (1970)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Martin Werner
    • 1
  1. 1.Ludwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations