• Martin Werner


This chapter introduces mobile communication systems and the fundamental technical principles including signals, capacity theorems, and modulation. It contains a detailed section on signal propagation and statistical models for signal propagation, which are behind several indoor positioning approaches. It further introduces the most important sensor systems, which can be used to infer the position of a mobile device in buildings.


Mobile Device Antenna Gain Quadrature Amplitude Modulation Hall Sensor Mobile Communication System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bahl, P., Padmanabhan, V.N.: Radar: an in-building rf-based user location and tracking system. In: Proceedings of the Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 2, pp. 775–784 (2000)Google Scholar
  2. 2.
    Geier, J.: SNR-Values and Microsoft Windows Network Status. Online (2012).
  3. 3.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11, pp. 10–18 (2009)CrossRefGoogle Scholar
  4. 4.
    Motley, A., Keenan, J.: Personal communication radio coverage in buildings at 900 MHz and 1700 MHz. Electron. Lett. 24(12), 763–764 (1988)CrossRefGoogle Scholar
  5. 5.
    Quinlan, J.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)Google Scholar
  6. 6.
    Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco, CA, USA (1993)Google Scholar
  7. 7.
    Rappaport, T.S.: Wireless Communications: Principles and Practices. Prentice-Hall, New Jersey (2002)Google Scholar
  8. 8.
    Schneier, B.: Applied Cryptography, 2nd edn. Chichester, West Sussex, England, Wiley (1996)Google Scholar
  9. 9.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Shannon, C.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Stallings, W.: Wireless Communication and Networks. Prentice Hall, New Jersey (2002)Google Scholar
  12. 12.
    Tran-Minh, N., Do-Hong, T.: Application of raytracing technique for predicting average power distribution in indoor environment. In: Second International Conference on Communications and Electronics, pp. 121–125 (2008)Google Scholar
  13. 13.
    Wölfle, G., Wahl, R., Wertz, P., Wildbolz, P., Landstorfer, F.: Dominant path prediction model for indoor scenarios. In: German Microwave Conference (GeMIC) (2005)Google Scholar
  14. 14.
    Zehner, M.L., Bannicke, K., Bill, R.: Positionierungsansätze mittels WLAN-Ausbreitungsmodellen (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Martin Werner
    • 1
  1. 1.Ludwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations