Abstract
Two different methods have been introduced in the past for the numerical analysis of Markov Regenerative Processes. The first one generates the embedded Markov chain explicitly and solves afterwards the often dense system of linear equations. The second method avoids computation of the embedded Markov chain by performing a transient analysis in each step. This method is called “matrix free” and it is often more efficient in memory and time. In this paper we go one step further by even avoiding the storage of the generator matrices required by the matrix-free method, thanks to the use of a Kronecker representation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ajmone Marsan, M., Chiola, G.: On Petri nets with deterministic and exponentially distributed firing times. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 266, pp. 132–145. Springer, Heidelberg (1987)
Amparore, E.G., Donatelli, S.: DSPN-Tool: a new DSPN and GSPN solver for GreatSPN. In: QEST 2010, pp. 79–80 (2010)
Amparore, E.G., Donatelli, S.: Revisiting matrix-free solution of Markov regenerative processes. Numerical Linear Algebra with Applications 18(6), 1067–1083 (2011)
Balbo, G., Beccuti, M., De Pierro, M., Franceschinis, G.: First Passage Time Computation in Tagged GSPNs with Queue Places. The Computer Journal (2010)
Buchholz, P.: Markov matrix market, http://ls4-www.cs.tu-dortmund.de/download/buchholz/struct-matrix-market.html
Buchholz, P.: Hierarchical structuring of superposed GSPNs. IEEE Trans. Software Eng. 25(2), 166–181 (1999)
Buchholz, P., Ciardo, G., Donatelli, S., Kemper, P.: Complexity of memory-efficient Kronecker operations with applications to the solution of Markov models. INFORMS Journal on Computing 12(3), 203–222 (2000)
Buchholz, P., Kemper, P.: Hierarchical reachability graph generation for Petri nets. Formal Methods in System Design 21(3), 281–315 (2002)
Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets. Performance Evaluation 20(1-3), 337–357 (1994)
Ciardo, G., Lindemann, C.: Analysis of Deterministic and Stochastic Petri Nets. In: PNPM 1993, pp. 160–169. IEEE Computer Society (1993)
Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: An efficient iteration strategy for symbolic state-space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001)
German, R.: Iterative analysis of Markov regenerative models. Perform. Eval. 44(1-4), 51–72 (2001)
Plateau, B., Fourneau, J.M.: A methodology for solving Markov models of parallel systems. J. Parallel Distrib. Comput. 12(4), 370–387 (1991)
Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 7(3), 856–869 (1986)
Stewart, W.J.: Introduction to the numerical solution of Markov chains. Princeton University Press (1994)
Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative evaluation of dense-time reactive systems. IEEE Transactions on Software Engineering 35(5), 703–719 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Amparore, E.G., Buchholz, P., Donatelli, S. (2014). A Structured Solution Approach for Markov Regenerative Processes. In: Norman, G., Sanders, W. (eds) Quantitative Evaluation of Systems. QEST 2014. Lecture Notes in Computer Science, vol 8657. Springer, Cham. https://doi.org/10.1007/978-3-319-10696-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-10696-0_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10695-3
Online ISBN: 978-3-319-10696-0
eBook Packages: Computer ScienceComputer Science (R0)