Skip to main content

Probabilistic Programming Process Algebra

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8657)

Abstract

Formal modelling languages such as process algebras are widespread and effective tools in computational modelling. However, handling data and uncertainty in a statistically meaningful way is an open problem in formal modelling, severely hampering the usefulness of these elegant tools in many real world applications. Here we introduce ProPPA, a process algebra which incorporates uncertainty in the model description, allowing the use of Machine Learning techniques to incorporate observational information in the modelling. We define the semantics of the language by introducing a quantitative generalisation of Constraint Markov Chains. We present results from a prototype implementation of the language, demonstrating its usefulness in performing inference in a non-trivial example.

Keywords

  • Model Check
  • Inference Algorithm
  • Label Transition System
  • Approximate Bayesian Computation
  • Process Algebra

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldini, A., Bernardo, M., Corradini, F.: A process algebraic approach to software architecture design. Springer (2010)

    Google Scholar 

  2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  3. Baldan, P., Bracciali, A., Brodo, L., Bruni, R.: Deducing Interactions in Partially Unspecified Biological Systems. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 262–276. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  4. Bortolussi, L., Sanguinetti, G.: Learning and designing stochastic processes from logical constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  5. Brim, L., Češka, M., Dražan, S., Šafránek, D.: Exploring parameter space of stochastic biochemical systems using quantitative model checking. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 107–123. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  6. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wsowski, A.: Constraint Markov Chains. Theor. Comp. Science 412(34), 4373–4404 (2011)

    CrossRef  MATH  Google Scholar 

  7. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine Learning Biochemical Networks from Temporal Logic Properties. In: Priami, C., Plotkin, G. (eds.) Trans. on Comput. Syst. Biol. VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  8. Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis of biological systems. Theor. Comp. Science 410(33-34), 3065–3084 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–263 (1986)

    CrossRef  MATH  Google Scholar 

  10. Daley, D.J., Kendall, D.G.: Epidemics and Rumours. Nature 204(4963) (1964)

    Google Scholar 

  11. Galpin, V.: Equivalences for a biological process algebra. Theor. Comp. Science 412(43), 6058–6082 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Georgoulas, A., Hillston, J., Sanguinetti, G.: ABC–Fun: A Probabilistic Programming Language for Biology. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 150–163. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  13. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. In: McAllester, D.A., Myllymäki, P. (eds.) UAI, pp. 220–229. AUAI Press (2008)

    Google Scholar 

  14. Hermanns, H.: Interactive Markov Chains: and the quest for quantified quality. Springer (2002)

    Google Scholar 

  15. Hillston, J.: A Compositional Approach to Performance Modelling. CUP (1996)

    Google Scholar 

  16. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A Bayesian Approach to Model Checking Biological Systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  17. Marco, D., Cairns, D., Shankland, C.: Optimisation of process algebra models using evolutionary computation. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 1296–1301 (2011)

    Google Scholar 

  18. Marco, D., Shankland, C., Cairns, D.: Evolving Bio-PEPA process algebra models using genetic programming. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, GECCO 2012, New York, NY, USA, pp. 177–184 (2012)

    Google Scholar 

  19. Minka, T., Winn, J., Guiver, J., Knowles, D.: Infer.NET 2.5, Microsoft Research Cambridge (2012), http://research.microsoft.com/infernet

  20. de Nicola, R., Latella, D., Loreti, M., Massink, M.: A Uniform Definition of Stochastic Process Calculi. ACM Comput. Surv. 46(1), 5:1–5:35 (2013)

    Google Scholar 

  21. Pfeffer, A.: The Design and Implementation of IBAL: A General-Purpose Probabilistic Language. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. The MIT Press (2007)

    Google Scholar 

  22. Pfeffer, A.: CTPPL: A Continuous Time Probabilistic Programming Language. In: IJCAI, pp. 1943–1950 (2009)

    Google Scholar 

  23. Sciacca, E., Spinella, S., Calcagno, C., Damiani, F., Coppo, M.: Parameter Identification and Assessment of Nutrient Transporters in AM Symbiosis through Stochastic Simulations. ENTCS 293, 83–96 (2013), Proceedings of CS2Bio 2012

    Google Scholar 

  24. Sen, K., Viswanathan, M., Agha, G.: Model-Checking Markov Chains in the Presence of Uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 394–410. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  25. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of The Royal Society Interface 6(31), 187–202 (2009)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Georgoulas, A., Hillston, J., Milios, D., Sanguinetti, G. (2014). Probabilistic Programming Process Algebra. In: Norman, G., Sanders, W. (eds) Quantitative Evaluation of Systems. QEST 2014. Lecture Notes in Computer Science, vol 8657. Springer, Cham. https://doi.org/10.1007/978-3-319-10696-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10696-0_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10695-3

  • Online ISBN: 978-3-319-10696-0

  • eBook Packages: Computer ScienceComputer Science (R0)