Trans-disciplinarity in Sustainability Science and Education

  • Markus WillEmail author
  • Lars Rydén
Part of the World Sustainability Series book series (WSUSE)


The paper presents a characterization of trans-disciplinary research and sustainability science and education, and argues for its necessity in addition to traditional forms of knowledge production. A short analysis on the obstacles met within the academic community for those working in trans-disciplinary research and education in an often rather conservative environment is also made. Finally, some examples are given, and conclusions on the implementation of integrative, trans-disciplinary research and sustainability science against the background of freedom of teaching and research will be drawn.


Trans-disciplinary research and education Sustainability science 


  1. Baltic University Programme
  2. Bolin B, Clark W, Corell R, Dickson N, Faucheux S, Gallopan G, Gruebler A, Hall M, Huntley B, Jaeger J, Jodha N, Kasperson R, Kates R, Lowe I, Mabogunje A, Matson P, McCarthy J, Mooney H, Moore B, O’Riordan T, Schellnhuber J, Svedin U (2000) Sustainability science: statement of the Friibergh Workshop on sustainability science. Last accessed 14 Apr 2014
  3. Böschen S, Kastenhofer K, Marschall L, Rust I, Soentgen J, Wehling P (2006) Scientific cultures of non-knowledge in the controversy over Genetically Modified Organisms (GMO). Cases Molecular Biology and Ecology GAIA 15(4):294–301Google Scholar
  4. Bozeman MC (1990) The environments of United-States R-and-D laboratories—political and market influences. Policy Sci 23:25–56CrossRefGoogle Scholar
  5. BUP (2007) Baltic University Urban Forum. Last accessed 14 Apr 2014
  6. BUP (2013) Annual Report 2012. Baltic University Programme Uppsala Centre for Sustainable Development, Uppsala UniversityGoogle Scholar
  7. Burger P, Kamber R (2003) Cognitive integration in transdisciplinary science: Knowledge as a key notion. Issues in Integrative Studies 21:43–73Google Scholar
  8. Conklin J (2009) Wicked problems and social complexity. White Paper, CogNexus InstituteGoogle Scholar
  9. Decker M (2007) Angewandte interdisziplinäre Forschung in der Technikfolgenabschätzung. Graue Reihe der Europäischen Akademie zur Erforschung von Folgen wissenschaftlich-technischer Entwicklungen, Bad-Neuenahr-Ahrweiler GmbHGoogle Scholar
  10. Dörner D (1997) The logic of failure: recognizing and avoiding error in complex situations. Perseus Press, CambridgeGoogle Scholar
  11. Dusseldorp M (2012) Bildungspotenziale der Simulation von TA-Institutionen: Das Beispiel des TAB. In: Dusseldorp, M. and Beecroft, R. (2012). Technikfolgen abschätzen lehren. Bildungspotenziale transdisziplinärer Methoden. Springer VSGoogle Scholar
  12. EEA (European Envionment Agency) (2001) Late lessons from early warnings: the precautionary principle 1896 –2000. In: Harremoës P et al. (eds) Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  13. EEA (European Envionment Agency) (2013) Late lessons from early warnings: science, precaution, innovation. In: Harremoës P et al. (eds) Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  14. Folke C, Hahn T, Olsson P, Norberg J (2005) Adaptive governance of social- ecological systems. Annu Rev Environ Resour 2005(30):441–473CrossRefGoogle Scholar
  15. Funtowicz S, Ravets J (1993) Science for the post-normal age. Futures 25:739–755, Butterworth-Heinemann Ltd Google Scholar
  16. Funtowicz S, Ravets J (2003) Post-normal science. Prepared for the international society for ecological economics—Internet encyclopedia of ecological economics. Last accessed 12 Aug 2014
  17. Gibbons M, Nowotny H, Limoges C (1994) The new production of knowledge: the dynamics of science and research in contemporary societies. Sage Pubn Inc, LondonGoogle Scholar
  18. Goldie J, Douglas B, Furnass B (2005) In search of sustainability. CSIRO Publishing, MelbourneGoogle Scholar
  19. Gross M, Hoffmann-Riem H, Krohn W (2005) Realexperimente. Robustheit und Dynamik ökologischer Gestaltungen in der Wissensgesellschaft. Soziale Welt 54:241–258Google Scholar
  20. Grunwald A (2002) Normativ, aber nicht normativistisch. Bemerkungen zur Grenze zwischen Wissen, Werten und Bekehrung als Anwort auf Christian Berg. Technikfolgenabschätzung – Theorie und Praxis Nr. 2, 11. Jg., Juli 2002Google Scholar
  21. Guston DH, Sarewitz C (2002) Real-time technology assessment. Tech Soc 24:93109CrossRefGoogle Scholar
  22. Hirsch-Hadorn G, Hoffmann-Riem H, Biber-Klemm S, Grossenbacher-Mansuy W, Joye D, Pohl C, Wiesmann U, Zemp E (eds) (2008) Handbook of transdisciplinary research. Springer Science + Business Media B.V, DordrechtGoogle Scholar
  23. Hult M, Lennung SA (2007) Towards a defintions of action research: a note and bibliography. J Manage Stud 17(2):241–250Google Scholar
  24. Jackson T (2009) Prosperity without Growth? The transition to a sustainable economy. Earthscan, LondonGoogle Scholar
  25. John T (2012) Transdisciplinarity as a research practice to approach sustainability challenges: a social-ecological perspective. John Benjamins Publishing, AmsterdamGoogle Scholar
  26. Jickling B (1994) Why I don’t want my children to be educated for sustainable development. Trumpeter 11(3). Last accessed 14 Apr 2012
  27. Kastenhofer K (2011) Risk assessment of emerging technologies and post-normal science. Sci Technol Human Values 36(3):307–333CrossRefGoogle Scholar
  28. Kates RW (2012) From the Unity of Nature to Sustainability Science: Ideas and Practice. In: Weinstein MP, Turner RE (eds) Sustainability science: the emerging paradigm and the urban environment. Springer Science + Business Media, LLC, New YorkGoogle Scholar
  29. Kates RW, Clark WC, Corell R, Hall MJ, Jaeger CC, Lowe I, McCarthy JJ, Schellnhuber HJ, Bolin B, Dickson NM, Faucheux S, Gallopin GC, Grübler A, Huntley B, Jäger J, Jodha NS, Kasperson RE, Mabogunje A, Matson P, Mooney H, Moore B, O’Riordan T, Svedin U (2001) Sustainability science. Science 292:641–642, American Association for the Advancement of ScienceGoogle Scholar
  30. Klein JT, Grossenbacher-Mansuy W, Häberli R, Bill A, Scholz RW, Welti M (eds) (2001) Transdisciplinarity: joint problem solving among science, technology, and society. Synthesebücher. Birkhäuser, BaselGoogle Scholar
  31. Knorr Cetina K (1999) Epistemic cultures: how the sciences make knowledge. Harvard University Press, CambridgeGoogle Scholar
  32. Kopfmüller J, Brandl V, Jörissen J, Paetau M, Banse G, Coenen R, Grunwald A (2001) Nachhaltige Entwicklung integrativ betrachtet. Konstitutive Elemente, Regeln, Indikatoren. Edition Sigma: BerlinGoogle Scholar
  33. Kuhn TS (1970) The structure of scientific revolutions. International encyclopedia of Unified Science, vol 2/2, 1962. The University of Chicago, ChicagoGoogle Scholar
  34. Leal W (2011) About the role of Universities and their contribution to sustainable development. High Educ Policy 24:427–438CrossRefGoogle Scholar
  35. Mulder K (2010) Don’t preach! Practice! Value laden statements in academic sustainability education. Int J Sustain High Educ 11(1):74–85CrossRefGoogle Scholar
  36. Nerland M, Jensen K, Bekele TA (2010) Changing cultures of knowledge production and learning in higher education: a literature review. University of Oslo Department of Educational Research, OsloGoogle Scholar
  37. Parr A (2009) Hijacking sustainability. The MIT Press, CambridgeGoogle Scholar
  38. Platje J (2006) Who is interested in what kind of sustainable development? Time- horizons and stakeholder interests. Econ Environ Stud 8:13–20Google Scholar
  39. PNAS (2010) Sustainability science. In: Proceedings of the National Academy of Sciences of the United States of America
  40. Pohl C (2011) What is progress in transdisciplinary research? Futures 43:618–626CrossRefGoogle Scholar
  41. Pohl C, Hirsch-Hadorn. (2007) Principles for designing transdisciplinary research. Oekom, MunichGoogle Scholar
  42. Polimeni, J.M., Mayumi, K., Giampietro, M., Alcott, B. (eds.) (2008). The Jevons Paradox and the Myth of Resource Efficiency Improvements. EarthscanGoogle Scholar
  43. Rittel WJH, Webber MM (1973) Dilemmas in a general theory of planning. Policy Sci 4:155–169, Elsevier Scientific Publishing CompanyGoogle Scholar
  44. Schaltegger S, Beckmann M, Hansen Erik G (2013) Transdisciplinarity in corporate sustainability: mapping the field. Bus Strategy Environ 22:219–230CrossRefGoogle Scholar
  45. Scott W (2002) Education and sustainable development: challenges, responsibilities, and frames of mind. Trumpeter 18(1):1–6Google Scholar
  46. Sterrmann JD (2012) Sustaining sustainability: creating a systems science in a fragmented academy and polarized word. In: Weinstein MP, Turner RE (eds) Sustainability science: the emerging paradigm and the Urban environment. Springer Science + Business Media, LLCGoogle Scholar
  47. Stokes DE (1997) Pasteur’s quadrant: basic science and technological innovation. Brookings Institution Press, WashingtonGoogle Scholar
  48. Swart R, Raskin P, Robinson J, Kates RW, Clarc WC (2002) Critical challenges for sustainability science. Science 297:1994–1995CrossRefGoogle Scholar
  49. WBGU (1997) World in transition: the research challenge. German advisory council on global change, Alfred-Wegener-Institute for Polar and marine research. Springer, BerlinGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Zittau/Goerlitz University of Applied SciencesZittauGermany
  2. 2.Baltic University Programme, Uppsala Centre for Sustainable DevelopmentUppsala UniversityUppsalaSweden

Personalised recommendations