Advertisement

Carbon Stored in a Sustainable University Building: Bringing Education to Practice

  • Bruno V. KobiskiEmail author
  • Eloy F. Casagrande
  • Gabriel Pendleton
Chapter
Part of the World Sustainability Series book series (WSUSE)

Abstract

Nowadays, humanity’s presence on Earth brings alarming statistics regarding the environmental impacts associated with its needs. This research aimed to conduct a survey of CO2 emissions of materials that were used in the construction of the Green Office of UTFPR. This was accomplished by analyzing the partial energy life cycle as well as the amount of carbon stored in these materials in order to subtract CO2 emissions from these values. Obtained values were compared to two forest types. One forest type was an Araucaria forest and other was a Pinus taeda plantation. Six materials were analyzed: Plastic-wood used on the deck and also on the pergola; a wood framing structure formed by panels of Oriented Strand Board, Pinus taeda studs and “I” beams also in Pinus taeda, windows of Eucalyptus urograndis; and a staircase made of Erisma ucinatum wood. The data was adjusted to allow the equivalence of the real carbon stored in vegetation types area. The results showed that the Green Office can equate to 555.85 m2 of Araucaria forest and 706.16 m2 of a plantation of Pinus taeda. Difficulties including the lack of data and lack of processes inputs and outputs controlling that can give support to such data were present. This research concluded that the real carbon stock can be admitted as sustainability criteria for decision making in civil construction as environmental consideration increases.

Keywords

Sustainability Real carbon stock Sustainability in civil construction Carbon balance 

References

  1. Balbinot R, Valerio AF, Sanquetta CR, Caldeira MVW, Silvestre R (2007) Estoque de Carbono em Plantações de Pinus spp. em Diferentes Idades no Sul do Estado do Paraná. Revista Floresta 38(2):317–324Google Scholar
  2. Escritorio Verde. www.escritorioverdeonline.com.br. Accessed 26 Mar 2014
  3. Fabricio MM (2002) Engenharia simultânea no projeto de edifícios. 317 f. Tese (Doutorado em Engenharia Civil e Urbanismo)—Universidade de São Paulo, SãoPauloGoogle Scholar
  4. Kibert CJ, Guy B (1997) Developing sustainable communities and buildings: planning, design, and construction. Unpublished Course Material for BCN 6585 Principles of Sustainable Development and Construction, Center for Construction and Environment, University of FloridaGoogle Scholar
  5. Neves JCL (2000) Produção e partição de biomassa, aspectos nutricionais e hídricos em plantios clonais de Eucalipto na região litorânea do Espírito Santo. Tese (Doutorado) Rio de JaneiroGoogle Scholar
  6. Renner RM (2004) Sequestro de Carbono e a Viabilização de novos reflorestamentos no Brasil. 132 f. Dissertação (Mestrado em Ciências Florestais)—Setor de Ciências Agrárias, Universidade Federal do Paraná, CuritibaGoogle Scholar
  7. Stachera T, Casagrande E (2007) Avaliação das emissões de CO2 na construção civil: um estudo de caso da habitação de interesse social no Paraná. IX ENGEMA—Encontro Nacional sobre Gestão e Meio Ambiente, CuritibaGoogle Scholar
  8. Tavares SF (2006) Metodologia de análise do ciclo de vida energético de edificações residenciais brasileiras. Tese (Doutorado)—Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Engenharia Civil: Florianópolis, p 225Google Scholar
  9. Watzlawick LC (2003) Estimativa de Biomassa e Carbono em Floresta Ombrófila Mista e Plantações Florestais a partir de Dados de Imagens do Satélite IKONOS II. Universidade Federal do Paraná. Curitiba, Tese (Doutorado)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bruno V. Kobiski
    • 1
    Email author
  • Eloy F. Casagrande
    • 1
  • Gabriel Pendleton
    • 2
  1. 1.Federal Technological University of ParanáCuritibaBrazil
  2. 2.Rochester Institute of TechnologyRochesterUSA

Personalised recommendations