Open Problems for Polynomials over Finite Fields and Applications

  • Daniel Panario


We survey open problems for univariate polynomials over finite fields. We first comment in some detail on the existence and number of several classes of polynomials. The open problems in that part of the survey are of a more theoretical nature. Then, we center on classes of low-weight (irreducible) polynomials. The conjectures here are more practically oriented. Finally, we give brief descriptions of a selection of open problems from several areas including factorization of polynomials, special polynomials (APN functions, permutations), and relations between rational integers and polynomials.


  1. 1.
    J. Arney, E.A. Bender, Random mappings with constraints on coalescence and number of origins. Pac. J. Math. 103, 269–294 (1982)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    J.-P. Aumasson, M. Finiasz, W. Meier, S. Vaudenay, A hardware-oriented trapdoor cipher, in Information Security and Privacy. Lecture Notes in Computer Science, vol. 4586 (Springer, New York, 2007), pp. 184–199Google Scholar
  3. 3.
    R.C. Bose, On some connections between the design of experiments and information theory. Bull. Inst. Int. Stat. 38, 257–271 (1961)MATHGoogle Scholar
  4. 4.
    K.A. Browning, J.F. Dillon, M.T. McQuistan, A.J. Wolfe, An APN permutation in dimension six, in Finite Fields: Theory and Applications. Contemp. Math., vol. 518 (The American Mathematical Society, Providence, 2010), pp. 33–42Google Scholar
  5. 5.
    L. Carlitz, Primitive roots in a finite field. Trans. Am. Math. Soc. 73, 373–382 (1952)MATHCrossRefGoogle Scholar
  6. 6.
    W. Chou, I. Shparlinski, On the cycle structure of repeated exponentiation modulo a prime. J. Number Theory 107, 345–356 (2004)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    S.D. Cohen, Primitive polynomials with a prescribed coefficient. Finite Fields Appl. 12, 425–491 (2006)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography, Series on Discrete Mathematics and Its Applications (CRC Press, Boca Raton, 2006)Google Scholar
  9. 9.
    S.D. Cohen, M. Prešern, The Hansen–Mullen primitive conjecture: completion of proof, in Number Theory and Polynomials. London Math. Soc. Lecture Note Series, vol. 352 (Cambridge University Press, Cambridge, 2008), pp. 89–120Google Scholar
  10. 10.
    S.D. Cohen, S. Huczynska, The primitive normal basis theorem—without a computer. J. Lond. Math. Soc. 2nd Ser. 67, 41–56 (2003)Google Scholar
  11. 11.
    C.J. Colbourn, J.H. Dinitz, Handbook of Combinatorial Designs, 2nd edn., Series on Discrete Mathematics and Its Applications (CRC Press, Boca Raton, 2007)Google Scholar
  12. 12.
    D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two. IEEE Trans. Inf. Theory 30, 587–594 (1984)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Davenport, Bases for finite fields. J. Lond. Math. Soc. 2nd Ser. 43, 21–39 (1968)Google Scholar
  14. 14.
    P. Dembowski, T.G. Ostrom, Planes of order n with collineation groups of order n 2. Math. Z. 103, 239–258 (1968)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    G. Effinger, Toward a complete twin primes theorem for polynomials over finite fields, in Finite Fields and Applications. Contemp. Math., vol. 461 (The American Mathematical Society, Providence, 2008), pp. 103–110Google Scholar
  16. 16.
    G. Effinger, D.R. Hayes, Additive Number Theory of Polynomials over a Finite Field, Oxford Mathematical Monographs (Oxford University Press, New York, 1991)Google Scholar
  17. 17.
    G. Effinger, K. Hicks, G.L. Mullen, Integers and polynomials: comparing the close cousins \(\mathbb{Z}\) and \(\mathbb{F}_{q}[x]\). Math. Intelligencer 27, 26–34 (2005)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Fan, X. Wang, Primitive normal polynomials with a prescribed coefficient. Finite Fields Appl. 15, 682–730 (2009)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    P. Flajolet, A.M. Odlyzko, Random mapping statistics, in Advances in cryptology—EUROCRYPT ’89. Lecture Notes in Comput. Sci., vol. 434 (Springer, New York, 1990), pp. 329–354Google Scholar
  20. 20.
    Ph. Flajolet, R. Sedgewick, Analytic Combinatorics (Cambridge University Press, Cambridge, 2009)MATHCrossRefGoogle Scholar
  21. 21.
    P. Flajolet, X. Gourdon, D. Panario, The complete analysis of a polynomial factorization algorithm over finite fields. J. Algorithms 40, 37–81 (2001)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    K. Ford, The distribution of integers with a divisor in a given interval. Ann. Math. 168, 367–433 (2008)MATHCrossRefGoogle Scholar
  23. 23.
    J. von zur Gathen, J. Gerhard, Modern Computer Algebra, 2nd edn. (Cambridge University Press, Cambridge/New York/Melbourne, 2003)Google Scholar
  24. 24.
    J. von zur Gathen, D. Panario, Factoring polynomials over finite fields: a survey. J. Symb. Comput. 31, 3–17 (2001)Google Scholar
  25. 25.
    J. von zur Gathen, D. Panario, B. Richmond, Interval partitions and polynomial factorization. Algorithmica 63, 363–397 (2012)Google Scholar
  26. 26.
    J. von zur Gathen, V. Shoup, Computing Frobenius maps and factoring polynomials. Comput. Complex. 2, 187–224 (1992)Google Scholar
  27. 27.
    S. Gao, J. Howell, D. Panario, Irreducible polynomials of given forms, in Finite Fields: Theory, Applications, and Algorithms. Contemp. Math., vol. 225 (The American Mathematical Society, Providence, 1999), pp. 43–54 sGoogle Scholar
  28. 28.
    T.A. Gassert, Chebyshev action on finite fields. arXiv:1209.4396v3Google Scholar
  29. 29.
    D.A. Goldston, J. Pintz, C.Y. Yldrm, Primes in tuples I. Ann. of Math. 170, 819–862 (2009)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    D. Hachenberger, Primitive complete normal bases for regular extensions. Glasgow Math. J. 43, 383–398 (2001)MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    D. Hachenberger, Primitive complete normal bases: existence in certain 2-power extensions and lower bounds. Discrete Math. 310, 3246–3250 (2010)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    T. Hansen, G.L. Mullen, Primitive polynomials over finite fields. Math. Comput. 59, 639–643, S47–S50 (1992)MathSciNetCrossRefGoogle Scholar
  33. 33.
    A.S. Hedayat, N.J.A. Sloane, J. Stufken, Orthogonal Arrays, Theory and Applications, Springer Series in Statistics (Springer, New York, 1999)Google Scholar
  34. 34.
    M. Herrmann, G. Leander, A practical key recovery attack on basic \(\mathcal{T}\mathcal{C}\mathcal{H}o\), in Public Key Cryptography—PKC 2009. Lecture Notes in Comput. Sci., vol. 5443 (Springer, New York, 2009), pp. 411–424Google Scholar
  35. 35.
    C.-N. Hsu, The distribution of irreducible polynomials in \(\mathbf{F}_{q}[t]\). J. Number Theory 61, 85–96 (1996)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    IEEE, Standard specifications for public key cryptography, Standard P1363-2000, Institute of Electrical and Electronics Engineering, 2000, Draft D13 available at
  37. 37.
    G. Ivanyos, M. Karpinski, L. Rónyai, N. Saxena, Trading GRH for algebra: algorithms for factoring polynomials and related structures. Math. Comput. 81, 493–531 (2012)MATHCrossRefGoogle Scholar
  38. 38.
    E. Jensen, M.R. Murty, Artin’s conjecture for polynomials over finite fields, in Number Theory, Trends in Mathematics (Birkhauser, Basel, 2000), pp. 167–181Google Scholar
  39. 39.
    K.S. Kedlaya, C. Umans, Fast modular composition in any characteristic, in 49th Annual IEEE Symposium on Foundations of Computer Science (2008), pp. 146–155Google Scholar
  40. 40.
    D. Koukoulopoulos, Divisors of shifted primes. Int. Math. Res. Not. IMRN 2010, 4585–4627 (2010)MATHMathSciNetGoogle Scholar
  41. 41.
    H.W. Lenstra, Jr., R.J. Schoof, Primitive normal bases for finite fields. Math. Comp. 48, 217–231 (1987)MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    R. Lidl, G.L. Mullen, When does a polynomial over a finite field permute the elements of the field? Am. Math. Mon. 95, 243–246 (1988)MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    R. Lidl, G.L. Mullen, When does a polynomial over a finite field permute the elements of the field? II. Am. Math. Mon. 100, 71–74 (1993)MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    R. Lidl, H. Niederreiter, Finite Fields, vol. 20, 2nd edn., Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1997)Google Scholar
  45. 45.
    A. MacFie, D. Panario, Random mappings with restricted preimages, in Proceedings of LatinCrypt 2012. Lecture Notes in Comput. Sci., vol.7533 (Springer, Berlin, 2012), pp. 254–270Google Scholar
  46. 46.
    C. Mauduit, J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers. Ann. Math. 171, 1591–1646 (2010)MATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    J. Maynard, Small gaps between primes. arXiv:1311.4600 (2013)Google Scholar
  48. 48.
    A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, Series on Discrete Mathematics and its Applications (CRC Press, Boca Raton, 1997)Google Scholar
  49. 49.
    I.H. Morgan, G.L. Mullen, Completely normal primitive basis generators of finite fields. Utilitas Math. 49, 21–43 (1996)MATHMathSciNetGoogle Scholar
  50. 50.
    G.L. Mullen, D. Panario, Handbook of Finite Fields, Series on Discrete Mathematics and Its Applications (CRC Press, Boca Raton, 2013)Google Scholar
  51. 51.
    A. Munemasa, Orthogonal arrays, primitive trinomials, and shift-register sequences. Finite Fields Appl. 4, 252–260 (1998)MATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    D. Panario, What do random polynomials over finite fields look like? in Finite Fields and Applications. Lecture Notes in Comput. Sci., vol. 2948 (Springer, Berlin, 2004), pp. 89–108Google Scholar
  53. 53.
    V.S. Pless, W.C. Huffman, R.A. Brualdi, Handbook of Coding Theory (North-Holland, Amsterdam, 1998)MATHGoogle Scholar
  54. 54.
    P. Pollack, A polynomial analogue of the twin primes conjecture. Proc. Am. Math. Soc. 136, 3775–3784 (2008)MATHMathSciNetCrossRefGoogle Scholar
  55. 55.
    J.M. Pollard, A Monte Carlo method for factorization, Nordisk Tidskr. Informationsbehandling (BIT) 15, 331–334 (1975)MATHMathSciNetGoogle Scholar
  56. 56.
    M. Scott, Optimal irreducible polynomials for GF(2m) arithmetic, in Software Performance Enhancement for Encryption and Decryption (SPEED 2007), Cryptology ePrint Archive (2007)Google Scholar
  57. 57.
    M. Sha, S. Hu, Monomial dynamical systems of dimension over finite fields. Acta Arith. 148, 309–331 (2011)MATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    R.G. Swan, Factorization of polynomials over finite fields. Pac. J. Math. 12, 1099–1106 (1962)MATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    S. Ugolini, Graphs associated with the map \(X\mapsto X + X^{-1}\) in finite fields of characteristic three and five. J. Number Theory 133, 1207–1228 (2013)MATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    T. Vasiga, J. Shallit, On the iteration of certain quadratic maps over GF(p). Discrete Math. 277, 219–240 (2004)MATHMathSciNetCrossRefGoogle Scholar
  61. 61.
    D. Wan, Generators and irreducible polynomials over finite fields. Math. Comput. 66, 1195–1212 (1997)MATHCrossRefGoogle Scholar
  62. 62.
    A. Weil, Sur les Courbes Algébriques et les Variétés qui s’en dÉduisent, Actualités Sci. Ind., no. 1041; Publ. Inst. Math. Univ. Strasbourg, vol. 7 (Hermann et Cie., Paris, 1945/1948)Google Scholar
  63. 63.
    Y. Zhang, Bounded gaps between primes. Ann. Math. 170, 1121–1174 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsCarleton UniversityOttawaCanada

Personalised recommendations