Skip to main content

True Random Number Generators

  • Chapter
  • First Online:
Open Problems in Mathematics and Computational Science

Abstract

Random numbers are needed in many areas: cryptography, Monte Carlo computation and simulation, industrial testing and labeling, hazard games, gambling, etc. Our assumption has been that random numbers cannot be computed; because digital computers operate deterministically, they cannot produce random numbers. Instead, random numbers are best obtained using physical (true) random number generators (TRNG), which operate by measuring a well-controlled and specially prepared physical process. Randomness of a TRNG can be precisely, scientifically characterized and measured. Especially valuable are the information-theoretic provable random number generators (RNGs), which, at the state of the art, seem to be possible only by exploiting randomness inherent to certain quantum systems. On the other hand, current industry standards dictate the use of RNGs based on free-running oscillators (FRO) whose randomness is derived from electronic noise present in logic circuits and which cannot be strictly proven as uniformly random, but offer easier technological realization. The FRO approach is currently used in 3rd- and 4th-generation FPGA and ASIC hardware, unsuitable for realization of quantum RNGs. In this chapter we compare weak and strong aspects of the two approaches. Finally, we discuss several examples where use of a true RNG is critical and show how it can significantly improve security of cryptographic systems, and discuss industrial and research challenges that prevent widespread use of TRNGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Abellán, W. Amaya, M. Jofre, M. Curty, A. Acín, J. Capmany, V. Pruneri, M.W. Mitchell, Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt. Express 22, 1645–1654 (2014)

    Article  Google Scholar 

  2. V. Bagini, M. Bucci. A design of reliable true random number generator for cryptographic applications, in Cryptographic Hardware and Embedded Systems (CHES), ed. by Ç.K. Koç, C. Paar (Springer, Berlin, 2002), pp. 204–218

    Google Scholar 

  3. B. Barak, R. Shaltiel, E. Tromer, True random number generators secure in a changing environment, in Cryptographic Hardware and Embedded Systems (CHES), ed. by C.D. Walter, Ç.K. Koç, C. Paar (Springer, Berlin, 2003), pp. 166–180

    Google Scholar 

  4. C.W.J. Beenakker, M. Büttiker, Suppression of shot noise in metallic diffusive conductors. Phys. Rev. B 46, 1889–1892 (1992)

    Article  Google Scholar 

  5. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, 10–12 Dec 1984, pp. 175–179

    Google Scholar 

  6. C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)

    MATH  Google Scholar 

  7. C.H. Bennett, T.J. Watson, G. Brassard, C. Crepeau, U.M. Maurer, Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)

    Article  MATH  Google Scholar 

  8. D.J. Bernstein, J. Buchmann, E. Dahmen (eds.), Post-Quantum Cryptography (Springer, Heidelberg, 2009)

    MATH  Google Scholar 

  9. P. Chevalier et al., Random number generator. U.S. Patent Number 3,790,768, 5 February 1974

    Google Scholar 

  10. B. Chor, O. Goldreich, J. Hasted, J. Freidmann, S. Rudich, R. Smolensky. The bit extraction problem or t-resilient functions, in 26th Annual Symposium on Foundations of Computer Science (FOCS) (IEEE, New York, 1985), pp. 396–407

    Google Scholar 

  11. T. Click, A. Liu, G. Kaminski, Quality of random number generators significantly affects results of Monte Carlo simulations for organic and biological systems. J. Comput. Chem. 32, 513–524 (2011)

    Article  Google Scholar 

  12. P.D. Coddington. Tests of random number generators using Ising model simulations. Int. J. Mod. Phys. C 7, 295–303 (1996)

    Article  Google Scholar 

  13. Cryptography Research. Evaluation summary: VIA C3 Nehemiah random number generator (2003), http://www.via.com.tw/en/downloads/whitepapers/initiatives/padlock/evaluation_summary_padlock_rng.pdf

  14. R.B. Davies, Exclusive OR (XOR) and Hardware Random Number Generators, http://www.robertnz.net/pdf/xor2.pdf. February 28, 2002

  15. A. De Matteis, S. Pagnutti, Long-range correlations in linear and non-linear random number generators. Parallel Comput. 14(2), 207–210 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Dichtl, J.D. Golic, High-speed true random number generation with logic gates only, in Cryptographic Hardware and Embedded Systems (CHES), ed. by P. Paillier, I. Verbauwhede (Springer, Berlin, 2007), pp. 45–62

    Google Scholar 

  17. W. Diffie, M.E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. J.F. Dynes, Z.L. Yuan, A.W. Sharpe, A.J. Shields, A high speed, postprocessing free, quantum random number generator. Appl. Phys. Lett. 93, 031109 (2008)

    Article  Google Scholar 

  19. R.J. Easter, C. French, Annex C: approved random number generators for FIPS PUB 140-2, in Security Requirements for Cryptographic Modules, NIST, February 2012

    Google Scholar 

  20. ESPACENET, European Patent Office, http://www.espacenet.com

  21. A.M. Ferrenberg, D.P. Landau, Y. J. Wong, Monte Carlo simulations: hidden errors from ‘good’ random number generators. Phys. Rev. Lett. 69, 3382–3384 (1992)

    Article  Google Scholar 

  22. A. Figotin et al., Random number generator based on the spontaneous alpha-decay. U.S. Patent Number 6,745,217, 1 June 2004

    Google Scholar 

  23. M. Fürst, H. Weier, S. Nauerth, D.G. Marangon, C. Kurtsiefer, H. Weinfurter, High speed optical quantum random number generation. Opt. Exp. 18, 13029–13037 (2010)

    Article  Google Scholar 

  24. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, V. Makarov, Perfect eavesdropping on a quantum cryptography system, 18 March 2012. arXiv:1011.0105v1 [quant-ph]

    Google Scholar 

  25. I. Goldberg, D. Wagner, Randomness in the Netscape browser. Dr. Dobb’s Journal, January 1996

    Google Scholar 

  26. L. Gollub, Vorrichtung zur gewinnung von zufallszahlen. Germany Patent Number DE19743856A1, 8 April 1999

    Google Scholar 

  27. M. Goresky, A. Klapper, Algebraic Shift Register Sequences (Cambridge University Press, Cambridge, 2012)

    MATH  Google Scholar 

  28. D. Gottesman, H.-K. Lo, N. Lutkenhaus, J. Preskill, Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004)

    MATH  MathSciNet  Google Scholar 

  29. P. Grassberger, On correlations in “good" random number generators. Phys. Lett. A 181, 43–46 (1993)

    Article  MathSciNet  Google Scholar 

  30. H. Guo, W. Tang, Y. Liu, W. Wei, Truly random number generation based on measurement of phase noise of a laser. Phys. Rev. E 81, 051137 (2010)

    Article  Google Scholar 

  31. R. Heinen, Private communication. University of Twente, Twente, Netherlands

    Google Scholar 

  32. P. Hellekalek, Good random number generators are (not so) easy to find. Math. Comput. Simulat. 46, 485–505 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. IdQuantique, Quantis: True random number generator exploiting quantum physics (2012), http://www.idquantique.com/random-number-generators/products/products-overview.html

  34. Institut Ruder Bošković. QRBG 121 (2012), http://qrbg.irb.hr

  35. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, A. Zeilinger, A fast and compact quantum random number generator. Rev. Sci. Instrum. 71, 1675–1680 (2000)

    Article  Google Scholar 

  36. P. Jonsson, Boom in Internet gambling ahead? US policy reversal clears the way, http://tinyurl.com/86b9aaz, 26 December 2011

  37. B. Jun, P. Kocher, The Intel random number generator. Cryptography Research Inc., White Paper Prepared for Intel Corporation, 22 April 1999

    Google Scholar 

  38. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, An optical ultrafast random bit generator. Nat. Photon. 4(1), 58–61 (2010)

    Article  Google Scholar 

  39. T. Kim, I.S. Wersborg, F.N.C. Wong, J.H. Shapiro, Complete physical simulation of the entangling-probe attack on the Bennett-Brassard 1984 protocol. Phys. Rev. A 75, 042327 (2007)

    Article  Google Scholar 

  40. D.E. Knuth, High speed single photon detection in the near infrared, in The Art of Computer Programming, vol. 2, 3rd edn. (Addison Wesley, Reading, 1997)

    Google Scholar 

  41. O. Kwon, Quantum random number generator using photon-number path entanglement. Appl. Opt. 48, 1774–1778 (2009)

    Article  Google Scholar 

  42. P. Lacharme, Post processing functions for a biased physical random number generator, in Fast Software Encryption (FSE) (2008), pp. 334–342

    Google Scholar 

  43. P. Lacharme, Analysis and construction of correctors. IEEE Trans. Inf. Theory 55(10), 4742–4748 (2009)

    Article  MathSciNet  Google Scholar 

  44. X. Li, A.B. Cohen, T.E. Murphy, R. Roy, Scalable parallel physical random number generator based on a superluminescent LED. Opt. Lett. 36, 1020–1022 (2011)

    Article  Google Scholar 

  45. Lotteries and Gaming Authority. Remote gaming regulations, Legal notice 176 of 2004, 110 of 2006, 2760 and 426 of 2007, and 90 of 2011. Malta, 2011

    Google Scholar 

  46. L. Lydersen, V. Makarov, J. Skaar, Secure gated detection scheme for quantum cryptography, 29 Jan 2011. arXiv:1101.5698 [quant-ph]

    Google Scholar 

  47. G. Marsaglia, DIEHARD Battery of Stringent Randomness Tests (1995), http://stat.fsu.edu/~geo/diehard.html

  48. G. Marsaglia, W.W. Tsang, The ziggurat method for generating random variables. J. Stat. Softw. 5(8), 1–7 (2000). http://www.jstatsoft.org/v05/i08

  49. M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simulat. 8, 3–30 (1998). http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

  50. U.M. Maurer, A universal statistical test for random bit generators. J. Cryptol. 5(2), 89–105 (1992)

    MATH  Google Scholar 

  51. U. Maurer, Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39, 733–742 (1993)

    Article  MATH  Google Scholar 

  52. T. McNichol, Totally random. Wired 11(8) (2003). http://www.wired.com/wired/archive/11.08/random.html.

  53. J.A. Miszczak, Generating and using truly random quantum states in Mathematica, 19 Oct 2011. arXiv:1102.4598v2 [quant-ph]

    Google Scholar 

  54. H. Nyquist, Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928)

    Article  Google Scholar 

  55. G. Parisi, F. Rapuano, Effects of the random number generator on computer simulations. Phys. Lett. B 157, 301–302 (1985)

    Article  MathSciNet  Google Scholar 

  56. Y. Peres, Iterating von Neumann’s procedure for extracting random bits. Ann. Stat. 20, 590–597 (1992)

    Article  MATH  Google Scholar 

  57. PicoQuant, PQRNG 150 (2012), http://www.picoquant.com/products/pqrng150/pqrng150.htm

  58. A. Proykova, How to improve a random number generator. Comput. Phys. Commun. 124, 125–131 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  59. B. Qi, Y.-M. Chi, H.-K. Lo, L. Qian, High speed quantum random number generation by measuring phase noise of single mode laser. Opt. Lett. 35, 312–314 (2010)

    Article  Google Scholar 

  60. qutools GmbH. quRNG (2012), http://www.qutools.com/products/quRNG/

  61. J.A. Reeds, N.J.A. Sloane, Shift-register synthesis (Modulo m). SIAM J. Comput. 14, 505–513 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  62. I. Reidler, Y. Aviad, M. Rosenbluh, I. Kanter, Ultra high-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103(2), 024102 (2009)

    Google Scholar 

  63. T. Ritter, Random Number Machines: A Literature Survey, http://www.ciphersbyritter.com/RES/RNGMACH.HTM, 4 Dec 2002

  64. R.L. Rivest, The RC4 encryption algorithm. RSA Data Security Inc., March 1992

    Google Scholar 

  65. F. Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez, Ç.K. Koç, Cryptographic Algorithms on Reconfigurable Hardware (Springer, Berlin, 2007)

    Google Scholar 

  66. C.B. Roellgen, Visualisation of potential weakness of existing cipher engine implementations in commercial on-the-fly disk encryption software. Global IP Telecommunications, Ltd. & PMC Ciphers, Inc., 15 Aug 2008

    Google Scholar 

  67. A. Ruhkin, Statistical testing of randomness: Old and new procedures, in Randomness Through Computation, ed. by H. Zenil (World Scientific, Singapore, 2011)

    Google Scholar 

  68. A. Ruhkin et al., A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST Special Publication 800-22rev1a, April 2010

    Google Scholar 

  69. D. Schellekens, B. Preneel, I. Verbauwhede, FPGA Vendor Agnostic True Random Number Generator (2006), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.5319

  70. F. Schmid, N.B. Wilding, Errors in Monte Carlo simulations using shift register random number generators. Int. J. Mod. Phys. 6, 781–787 (1995)

    Article  Google Scholar 

  71. R. Shaltiel, Recent developments in explicit constructions of extractors. Bull. EATCS 77, 67–95 (2002)

    MATH  MathSciNet  Google Scholar 

  72. R. Shaltiel, How to get more mileage from randomness extractors. Random Struct. Algorithm 33, 157–186 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  73. P. Shor, J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  Google Scholar 

  74. A. Sidorenko, B. Schoenmakers, State recovery attacks on pseudorandom generators, in Western European Workshop on Research in Cryptology (Springer, Berlin, 2005), pp. 53–63

    Google Scholar 

  75. A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, H. Zbinden, Optical quantum random number generator. J. Mod. Opt. 47, 595–598 (2000)

    Google Scholar 

  76. M. Stipčević, Apparatus and method for generating true random bits based on time integration of an electronic noise source. WIPO Patent Number WO03040854, 17 October 2001

    Google Scholar 

  77. M. Stipčević, Fast nondeterministic random bit generator based on weakly correlated physical events. Rev. Sci. Instrum. 75, 4442–4449 (2004)

    Article  Google Scholar 

  78. M. Stipčević, Quantum random bit generator. WIPO Patent Number WO2005106645 (A2), 30 April 2004

    Google Scholar 

  79. M. Stipčević, Preventing detector blinding attack and other random number generator attacks on quantum cryptography by use of an explicit random number generator, (2014). arXiv:1403.0143v3 [quant-ph]

    Google Scholar 

  80. M. Stipčević, B.M. Rogina, Quantum random number generator based on photonic emission in semiconductors. Rev. Sci. Instrum. 78, 1–7 (2007)

    Google Scholar 

  81. B. Sunar, True random number generators for cryptography, in Cryptographic Engineering, ed. by Ç.K. Koç (Springer, Berlin, 2009), pp. 55–73

    Chapter  Google Scholar 

  82. B. Sunar, W.J. Martin, D.R. Stinson, A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1), 109–119 (2007)

    Article  MathSciNet  Google Scholar 

  83. G. Taylor, G. Cox, Behind Intel’s new random-number generator. IEEE Spectrum, http://spectrum.ieee.org/computing/hardware/behind-intels-new-randomnumber-generator, 24 Aug 2011

  84. T.E. Tkacik, A hardware random number generator, in Cryptographic Hardware and Embedded Systems (CHES), ed. by B.S. Kaliski Jr., Ç.K. Koç, C. Paar (Springer, Berlin, 2002), pp. 450–453

    Google Scholar 

  85. A. Uchida et al., Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photon. 2, 728–732 (2008)

    Article  Google Scholar 

  86. G. Vallone, D. Marangon, M. Tomasin, P. Villoresi, Self-calibrating quantum random number generator based on the uncertainty principle, 30 Jan 2014. arXiv:1401.7917 [quant-ph]

    Google Scholar 

  87. I. Vattulainen, T. Ala-Nissila, K. Kankaala, Physical tests for random numbers in simulations. Phys. Rev. Lett. 73, 2513–2516 (1994)

    Article  Google Scholar 

  88. VIA Inc. Via security application note (2005), www.via.com.tw/en/downloads/whitepapers/initiatives/padlock/security_application_note.pdf

  89. VIA Inc. AES encryption (2012), http://www.via.com.tw/en/initiatives/padlock/hardware.jsp

  90. VIA Inc. Random number generation (2012), http://www.via.com.tw/en/initiatives/padlock/hardware.jsp

  91. VIA Inc. Via padlock security engine (2012), http://www.via.com.tw/en/initiatives/padlock/hardware.jsp

  92. J. Viega, Practical random number generation in software, in Proceedings of 19th Annual Computer Security Applications Conference (2003), pp. 129–140

    Google Scholar 

  93. C.H. Vincent, The generation of truly random binary numbers. J. Phys. E: Sci. Instrum. 3, 594–598 (1970)

    Article  Google Scholar 

  94. J. von Neumann, Various techniques for use in connection with random digits. John von Neumann Collect. Works 5, 768–770 (1963)

    Google Scholar 

  95. M. Wahl, M. Leifgen, M. Berlin, T. Roehlicke, H.J. Rahn, O. Benson, An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Appl. Phys. Lett. 98, 171105 (2011)

    Article  Google Scholar 

  96. J. Walker, Ent: A pseudorandom number sequence test program, http://www.fourmilab.ch/random/.

  97. A.B. Wang, Y.C. Wang, H.C. He, Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback. IEEE Photon. Technol. Lett. 20, 1633–1635 (2008)

    Article  Google Scholar 

  98. A.B. Wang, Y.C. Wang, J.F. Wang, Route to broadband chaos in a chaotic laser diode subject to optical injection. Opt. Lett. 34, 1144–1146 (2009)

    Article  Google Scholar 

  99. M.A. Wayne, P.G. Kwiat, Low-bias high-speed quantum random number generator via shaped optical pulses. Opt. Exp. 18, 9351–9357 (2010)

    Article  Google Scholar 

  100. M.A. Wayne, E.R. Jeffrey, G.M. Akselrod, P.G. Kwiat, Photon arrival time quantum random number generation. J. Mod. Opt. 56, 516–522 (2009)

    Article  MATH  Google Scholar 

  101. S.-K. Yoo, D. Karakoyunlu, B. Birand, B. Sunar, Improving the robustness of ring oscillator TRNGs. ACM Trans. Reconfigur. Technol. Syst. 3(2), 9:1–30 (2010)

    Google Scholar 

  102. Z.L. Yuan, B.E. Kardynal, A.W. Sharpe, A.J. Shields, High speed single photon detection in the near infrared. Appl. Phys. Lett. 91, 041114 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Stipčević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stipčević, M., Koç, Ç.K. (2014). True Random Number Generators. In: Koç, Ç. (eds) Open Problems in Mathematics and Computational Science. Springer, Cham. https://doi.org/10.1007/978-3-319-10683-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10683-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10682-3

  • Online ISBN: 978-3-319-10683-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics