True Random Number Generators

  • Mario Stipčević
  • Çetin Kaya Koç


Random numbers are needed in many areas: cryptography, Monte Carlo computation and simulation, industrial testing and labeling, hazard games, gambling, etc. Our assumption has been that random numbers cannot be computed; because digital computers operate deterministically, they cannot produce random numbers. Instead, random numbers are best obtained using physical (true) random number generators (TRNG), which operate by measuring a well-controlled and specially prepared physical process. Randomness of a TRNG can be precisely, scientifically characterized and measured. Especially valuable are the information-theoretic provable random number generators (RNGs), which, at the state of the art, seem to be possible only by exploiting randomness inherent to certain quantum systems. On the other hand, current industry standards dictate the use of RNGs based on free-running oscillators (FRO) whose randomness is derived from electronic noise present in logic circuits and which cannot be strictly proven as uniformly random, but offer easier technological realization. The FRO approach is currently used in 3rd- and 4th-generation FPGA and ASIC hardware, unsuitable for realization of quantum RNGs. In this chapter we compare weak and strong aspects of the two approaches. Finally, we discuss several examples where use of a true RNG is critical and show how it can significantly improve security of cryptographic systems, and discuss industrial and research challenges that prevent widespread use of TRNGs.


Random Number Chaotic System Hash Function Quantum Cryptography Photon Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Abellán, W. Amaya, M. Jofre, M. Curty, A. Acín, J. Capmany, V. Pruneri, M.W. Mitchell, Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt. Express 22, 1645–1654 (2014)CrossRefGoogle Scholar
  2. 2.
    V. Bagini, M. Bucci. A design of reliable true random number generator for cryptographic applications, in Cryptographic Hardware and Embedded Systems (CHES), ed. by Ç.K. Koç, C. Paar (Springer, Berlin, 2002), pp. 204–218Google Scholar
  3. 3.
    B. Barak, R. Shaltiel, E. Tromer, True random number generators secure in a changing environment, in Cryptographic Hardware and Embedded Systems (CHES), ed. by C.D. Walter, Ç.K. Koç, C. Paar (Springer, Berlin, 2003), pp. 166–180Google Scholar
  4. 4.
    C.W.J. Beenakker, M. Büttiker, Suppression of shot noise in metallic diffusive conductors. Phys. Rev. B 46, 1889–1892 (1992)CrossRefGoogle Scholar
  5. 5.
    C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, 10–12 Dec 1984, pp. 175–179Google Scholar
  6. 6.
    C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)MATHGoogle Scholar
  7. 7.
    C.H. Bennett, T.J. Watson, G. Brassard, C. Crepeau, U.M. Maurer, Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)CrossRefMATHGoogle Scholar
  8. 8.
    D.J. Bernstein, J. Buchmann, E. Dahmen (eds.), Post-Quantum Cryptography (Springer, Heidelberg, 2009)MATHGoogle Scholar
  9. 9.
    P. Chevalier et al., Random number generator. U.S. Patent Number 3,790,768, 5 February 1974Google Scholar
  10. 10.
    B. Chor, O. Goldreich, J. Hasted, J. Freidmann, S. Rudich, R. Smolensky. The bit extraction problem or t-resilient functions, in 26th Annual Symposium on Foundations of Computer Science (FOCS) (IEEE, New York, 1985), pp. 396–407Google Scholar
  11. 11.
    T. Click, A. Liu, G. Kaminski, Quality of random number generators significantly affects results of Monte Carlo simulations for organic and biological systems. J. Comput. Chem. 32, 513–524 (2011)CrossRefGoogle Scholar
  12. 12.
    P.D. Coddington. Tests of random number generators using Ising model simulations. Int. J. Mod. Phys. C 7, 295–303 (1996)CrossRefGoogle Scholar
  13. 13.
    Cryptography Research. Evaluation summary: VIA C3 Nehemiah random number generator (2003),
  14. 14.
    R.B. Davies, Exclusive OR (XOR) and Hardware Random Number Generators, February 28, 2002
  15. 15.
    A. De Matteis, S. Pagnutti, Long-range correlations in linear and non-linear random number generators. Parallel Comput. 14(2), 207–210 (1990)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    M. Dichtl, J.D. Golic, High-speed true random number generation with logic gates only, in Cryptographic Hardware and Embedded Systems (CHES), ed. by P. Paillier, I. Verbauwhede (Springer, Berlin, 2007), pp. 45–62Google Scholar
  17. 17.
    W. Diffie, M.E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    J.F. Dynes, Z.L. Yuan, A.W. Sharpe, A.J. Shields, A high speed, postprocessing free, quantum random number generator. Appl. Phys. Lett. 93, 031109 (2008)CrossRefGoogle Scholar
  19. 19.
    R.J. Easter, C. French, Annex C: approved random number generators for FIPS PUB 140-2, in Security Requirements for Cryptographic Modules, NIST, February 2012Google Scholar
  20. 20.
    ESPACENET, European Patent Office,
  21. 21.
    A.M. Ferrenberg, D.P. Landau, Y. J. Wong, Monte Carlo simulations: hidden errors from ‘good’ random number generators. Phys. Rev. Lett. 69, 3382–3384 (1992)CrossRefGoogle Scholar
  22. 22.
    A. Figotin et al., Random number generator based on the spontaneous alpha-decay. U.S. Patent Number 6,745,217, 1 June 2004Google Scholar
  23. 23.
    M. Fürst, H. Weier, S. Nauerth, D.G. Marangon, C. Kurtsiefer, H. Weinfurter, High speed optical quantum random number generation. Opt. Exp. 18, 13029–13037 (2010)CrossRefGoogle Scholar
  24. 24.
    I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, V. Makarov, Perfect eavesdropping on a quantum cryptography system, 18 March 2012. arXiv:1011.0105v1 [quant-ph]Google Scholar
  25. 25.
    I. Goldberg, D. Wagner, Randomness in the Netscape browser. Dr. Dobb’s Journal, January 1996Google Scholar
  26. 26.
    L. Gollub, Vorrichtung zur gewinnung von zufallszahlen. Germany Patent Number DE19743856A1, 8 April 1999Google Scholar
  27. 27.
    M. Goresky, A. Klapper, Algebraic Shift Register Sequences (Cambridge University Press, Cambridge, 2012)MATHGoogle Scholar
  28. 28.
    D. Gottesman, H.-K. Lo, N. Lutkenhaus, J. Preskill, Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004)MATHMathSciNetGoogle Scholar
  29. 29.
    P. Grassberger, On correlations in “good" random number generators. Phys. Lett. A 181, 43–46 (1993)CrossRefMathSciNetGoogle Scholar
  30. 30.
    H. Guo, W. Tang, Y. Liu, W. Wei, Truly random number generation based on measurement of phase noise of a laser. Phys. Rev. E 81, 051137 (2010)CrossRefGoogle Scholar
  31. 31.
    R. Heinen, Private communication. University of Twente, Twente, NetherlandsGoogle Scholar
  32. 32.
    P. Hellekalek, Good random number generators are (not so) easy to find. Math. Comput. Simulat. 46, 485–505 (1998)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    IdQuantique, Quantis: True random number generator exploiting quantum physics (2012),
  34. 34.
    Institut Ruder Bošković. QRBG 121 (2012),
  35. 35.
    T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, A. Zeilinger, A fast and compact quantum random number generator. Rev. Sci. Instrum. 71, 1675–1680 (2000)CrossRefGoogle Scholar
  36. 36.
    P. Jonsson, Boom in Internet gambling ahead? US policy reversal clears the way,, 26 December 2011
  37. 37.
    B. Jun, P. Kocher, The Intel random number generator. Cryptography Research Inc., White Paper Prepared for Intel Corporation, 22 April 1999Google Scholar
  38. 38.
    I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, An optical ultrafast random bit generator. Nat. Photon. 4(1), 58–61 (2010)CrossRefGoogle Scholar
  39. 39.
    T. Kim, I.S. Wersborg, F.N.C. Wong, J.H. Shapiro, Complete physical simulation of the entangling-probe attack on the Bennett-Brassard 1984 protocol. Phys. Rev. A 75, 042327 (2007)CrossRefGoogle Scholar
  40. 40.
    D.E. Knuth, High speed single photon detection in the near infrared, in The Art of Computer Programming, vol. 2, 3rd edn. (Addison Wesley, Reading, 1997)Google Scholar
  41. 41.
    O. Kwon, Quantum random number generator using photon-number path entanglement. Appl. Opt. 48, 1774–1778 (2009)CrossRefGoogle Scholar
  42. 42.
    P. Lacharme, Post processing functions for a biased physical random number generator, in Fast Software Encryption (FSE) (2008), pp. 334–342Google Scholar
  43. 43.
    P. Lacharme, Analysis and construction of correctors. IEEE Trans. Inf. Theory 55(10), 4742–4748 (2009)CrossRefMathSciNetGoogle Scholar
  44. 44.
    X. Li, A.B. Cohen, T.E. Murphy, R. Roy, Scalable parallel physical random number generator based on a superluminescent LED. Opt. Lett. 36, 1020–1022 (2011)CrossRefGoogle Scholar
  45. 45.
    Lotteries and Gaming Authority. Remote gaming regulations, Legal notice 176 of 2004, 110 of 2006, 2760 and 426 of 2007, and 90 of 2011. Malta, 2011Google Scholar
  46. 46.
    L. Lydersen, V. Makarov, J. Skaar, Secure gated detection scheme for quantum cryptography, 29 Jan 2011. arXiv:1101.5698 [quant-ph]Google Scholar
  47. 47.
    G. Marsaglia, DIEHARD Battery of Stringent Randomness Tests (1995),
  48. 48.
    G. Marsaglia, W.W. Tsang, The ziggurat method for generating random variables. J. Stat. Softw. 5(8), 1–7 (2000).
  49. 49.
    M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simulat. 8, 3–30 (1998).
  50. 50.
    U.M. Maurer, A universal statistical test for random bit generators. J. Cryptol. 5(2), 89–105 (1992)MATHGoogle Scholar
  51. 51.
    U. Maurer, Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39, 733–742 (1993)CrossRefMATHGoogle Scholar
  52. 52.
    T. McNichol, Totally random. Wired 11(8) (2003).
  53. 53.
    J.A. Miszczak, Generating and using truly random quantum states in Mathematica, 19 Oct 2011. arXiv:1102.4598v2 [quant-ph]Google Scholar
  54. 54.
    H. Nyquist, Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928)CrossRefGoogle Scholar
  55. 55.
    G. Parisi, F. Rapuano, Effects of the random number generator on computer simulations. Phys. Lett. B 157, 301–302 (1985)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Y. Peres, Iterating von Neumann’s procedure for extracting random bits. Ann. Stat. 20, 590–597 (1992)CrossRefMATHGoogle Scholar
  57. 57.
  58. 58.
    A. Proykova, How to improve a random number generator. Comput. Phys. Commun. 124, 125–131 (2000)CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    B. Qi, Y.-M. Chi, H.-K. Lo, L. Qian, High speed quantum random number generation by measuring phase noise of single mode laser. Opt. Lett. 35, 312–314 (2010)CrossRefGoogle Scholar
  60. 60.
    qutools GmbH. quRNG (2012),
  61. 61.
    J.A. Reeds, N.J.A. Sloane, Shift-register synthesis (Modulo m). SIAM J. Comput. 14, 505–513 (1985)CrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    I. Reidler, Y. Aviad, M. Rosenbluh, I. Kanter, Ultra high-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103(2), 024102 (2009)Google Scholar
  63. 63.
    T. Ritter, Random Number Machines: A Literature Survey,, 4 Dec 2002
  64. 64.
    R.L. Rivest, The RC4 encryption algorithm. RSA Data Security Inc., March 1992Google Scholar
  65. 65.
    F. Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez, Ç.K. Koç, Cryptographic Algorithms on Reconfigurable Hardware (Springer, Berlin, 2007)Google Scholar
  66. 66.
    C.B. Roellgen, Visualisation of potential weakness of existing cipher engine implementations in commercial on-the-fly disk encryption software. Global IP Telecommunications, Ltd. & PMC Ciphers, Inc., 15 Aug 2008Google Scholar
  67. 67.
    A. Ruhkin, Statistical testing of randomness: Old and new procedures, in Randomness Through Computation, ed. by H. Zenil (World Scientific, Singapore, 2011)Google Scholar
  68. 68.
    A. Ruhkin et al., A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST Special Publication 800-22rev1a, April 2010Google Scholar
  69. 69.
    D. Schellekens, B. Preneel, I. Verbauwhede, FPGA Vendor Agnostic True Random Number Generator (2006),
  70. 70.
    F. Schmid, N.B. Wilding, Errors in Monte Carlo simulations using shift register random number generators. Int. J. Mod. Phys. 6, 781–787 (1995)CrossRefGoogle Scholar
  71. 71.
    R. Shaltiel, Recent developments in explicit constructions of extractors. Bull. EATCS 77, 67–95 (2002)MATHMathSciNetGoogle Scholar
  72. 72.
    R. Shaltiel, How to get more mileage from randomness extractors. Random Struct. Algorithm 33, 157–186 (2008)CrossRefMATHMathSciNetGoogle Scholar
  73. 73.
    P. Shor, J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)CrossRefGoogle Scholar
  74. 74.
    A. Sidorenko, B. Schoenmakers, State recovery attacks on pseudorandom generators, in Western European Workshop on Research in Cryptology (Springer, Berlin, 2005), pp. 53–63Google Scholar
  75. 75.
    A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, H. Zbinden, Optical quantum random number generator. J. Mod. Opt. 47, 595–598 (2000)Google Scholar
  76. 76.
    M. Stipčević, Apparatus and method for generating true random bits based on time integration of an electronic noise source. WIPO Patent Number WO03040854, 17 October 2001Google Scholar
  77. 77.
    M. Stipčević, Fast nondeterministic random bit generator based on weakly correlated physical events. Rev. Sci. Instrum. 75, 4442–4449 (2004)CrossRefGoogle Scholar
  78. 78.
    M. Stipčević, Quantum random bit generator. WIPO Patent Number WO2005106645 (A2), 30 April 2004Google Scholar
  79. 79.
    M. Stipčević, Preventing detector blinding attack and other random number generator attacks on quantum cryptography by use of an explicit random number generator, (2014). arXiv:1403.0143v3 [quant-ph]Google Scholar
  80. 80.
    M. Stipčević, B.M. Rogina, Quantum random number generator based on photonic emission in semiconductors. Rev. Sci. Instrum. 78, 1–7 (2007)Google Scholar
  81. 81.
    B. Sunar, True random number generators for cryptography, in Cryptographic Engineering, ed. by Ç.K. Koç (Springer, Berlin, 2009), pp. 55–73CrossRefGoogle Scholar
  82. 82.
    B. Sunar, W.J. Martin, D.R. Stinson, A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1), 109–119 (2007)CrossRefMathSciNetGoogle Scholar
  83. 83.
    G. Taylor, G. Cox, Behind Intel’s new random-number generator. IEEE Spectrum,, 24 Aug 2011
  84. 84.
    T.E. Tkacik, A hardware random number generator, in Cryptographic Hardware and Embedded Systems (CHES), ed. by B.S. Kaliski Jr., Ç.K. Koç, C. Paar (Springer, Berlin, 2002), pp. 450–453Google Scholar
  85. 85.
    A. Uchida et al., Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photon. 2, 728–732 (2008)CrossRefGoogle Scholar
  86. 86.
    G. Vallone, D. Marangon, M. Tomasin, P. Villoresi, Self-calibrating quantum random number generator based on the uncertainty principle, 30 Jan 2014. arXiv:1401.7917 [quant-ph]Google Scholar
  87. 87.
    I. Vattulainen, T. Ala-Nissila, K. Kankaala, Physical tests for random numbers in simulations. Phys. Rev. Lett. 73, 2513–2516 (1994)CrossRefGoogle Scholar
  88. 88.
  89. 89.
  90. 90.
    VIA Inc. Random number generation (2012),
  91. 91.
    VIA Inc. Via padlock security engine (2012),
  92. 92.
    J. Viega, Practical random number generation in software, in Proceedings of 19th Annual Computer Security Applications Conference (2003), pp. 129–140Google Scholar
  93. 93.
    C.H. Vincent, The generation of truly random binary numbers. J. Phys. E: Sci. Instrum. 3, 594–598 (1970)CrossRefGoogle Scholar
  94. 94.
    J. von Neumann, Various techniques for use in connection with random digits. John von Neumann Collect. Works 5, 768–770 (1963)Google Scholar
  95. 95.
    M. Wahl, M. Leifgen, M. Berlin, T. Roehlicke, H.J. Rahn, O. Benson, An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Appl. Phys. Lett. 98, 171105 (2011)CrossRefGoogle Scholar
  96. 96.
    J. Walker, Ent: A pseudorandom number sequence test program,
  97. 97.
    A.B. Wang, Y.C. Wang, H.C. He, Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback. IEEE Photon. Technol. Lett. 20, 1633–1635 (2008)CrossRefGoogle Scholar
  98. 98.
    A.B. Wang, Y.C. Wang, J.F. Wang, Route to broadband chaos in a chaotic laser diode subject to optical injection. Opt. Lett. 34, 1144–1146 (2009)CrossRefGoogle Scholar
  99. 99.
    M.A. Wayne, P.G. Kwiat, Low-bias high-speed quantum random number generator via shaped optical pulses. Opt. Exp. 18, 9351–9357 (2010)CrossRefGoogle Scholar
  100. 100.
    M.A. Wayne, E.R. Jeffrey, G.M. Akselrod, P.G. Kwiat, Photon arrival time quantum random number generation. J. Mod. Opt. 56, 516–522 (2009)CrossRefMATHGoogle Scholar
  101. 101.
    S.-K. Yoo, D. Karakoyunlu, B. Birand, B. Sunar, Improving the robustness of ring oscillator TRNGs. ACM Trans. Reconfigur. Technol. Syst. 3(2), 9:1–30 (2010)Google Scholar
  102. 102.
    Z.L. Yuan, B.E. Kardynal, A.W. Sharpe, A.J. Shields, High speed single photon detection in the near infrared. Appl. Phys. Lett. 91, 041114 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Centre of Excellence for Advanced Materials and SensorsRudjer Bošković InstituteZagrebCroatia
  2. 2.University of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations