Skip to main content

Respiratory and Cardiovascular Effects of Metals in Ambient Particulate Matter: A Critical Review

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology

Abstract

There is a large body of community-level epidemiologic evidence showing positive associations between increases in morbidity and mortality from respiratory and cardiovascular causes, and increases in the mass of ambient particulate matter (PM) in air in the preceding 1–3 days (Dockery and Pope 1994; Schwartz and Morris 1995; Laden et al. 2000). The evidence has been sufficiently convincing to support the development of ambient air quality standards and regulations to reduce air particulate emissions in the U.S., Canada and Europe. Ambient PM is a dynamic and complex mixture that varies in composition over both time and location; and, it is not clear which components of ambient PM are most active in producing respiratory and cardiovascular health effects. Identifying which components of ambient PM present the greatest risk is potentially important for refining strategies to protect public health (Grahame and Schlesinger 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson IY, Prieditis H, Hedgecock C, Vincent R (2000) Zinc is the toxic factor in the lung response to an atmospheric particulate sample. Toxicol Appl Pharmacol 166(2):111–119

    CAS  Google Scholar 

  • Adgate JL, Mongin SJ, Pratt GC, Zhang J, Field MP, Ramachandran G (2007) Relationships between personal, indoor, and outdoor exposures to trace elements in PM(2.5). Sci Total Environ 386(1–3):21–32

    CAS  Google Scholar 

  • Alley D, Langley-Turnbaugh S, Gordon N, Wise J, Van EG, Jalbert A (2009) The effect of PM10 on human lung fibroblasts. Toxicol Ind Health 25(2):111–120

    CAS  Google Scholar 

  • Antonini JM, Taylor MD, Leonard SS, Lawryk NJ, Shi X, Clarke RW, Roberts JR (2004) Metal composition and solubility determine lung toxicity induced by residual oil fly ash collected from different sites within a power plant. Mol Cell Biochem 255(1–2):257–265

    CAS  Google Scholar 

  • Aust AE, Ball JC, Hu AA, Lighty JS, Smith KR, Straccia AM, Veranth JM, Young WC (2002) Particle characteristics responsible for effects on human lung epithelial cells. Res Rep Health Eff Inst 110:1–65

    Google Scholar 

  • Batalha JR, Saldiva PH, Clarke RW, Coull BA, Stearns RC, Lawrence J (2002) Concentrated ambient air particles induce vasoconstriction of small pulmonary arteries in rats. Environ Health Perspect 110(12):1191–1197

    CAS  Google Scholar 

  • Bell ML, Ebisu K, Peng RD, Samet JM, Dominici F (2009) Hospital admissions and chemical composition of fine particle air pollution. Am J Respir Crit Care Med 179(12):1115–1120

    CAS  Google Scholar 

  • Binkova B, Bobak M, Chatterjee A, Chauhan A, Dejmek J, Dockery DW, Kuna-Dibbert B (2004) The effects of air pollution on children’s health and development: a review of the evidence. World Health Organization, Geneva

    Google Scholar 

  • Burnett RT, Brook J, Dann T, Delocla C, Philips O, Cakmak S, Vincent R, Goldberg MS, Drewski D (2000) Association between particulate- and gas-phase components of urban air pollution and daily mortality in eight Canadian cities. Inhal Toxicol 12(Suppl 4):15–39

    CAS  Google Scholar 

  • Campen MJ, Nolan JP, Schladweiler MC, Kodavanti UP, Evansky PA, Costa DL, Watkinson WP (2001) Cardiovascular and thermoregulatory effects of inhaled PM-associated transition metals: a potential interaction between nickel and vanadium sulfate. Toxicol Sci 64(2):243–252

    CAS  Google Scholar 

  • Campen MJ, Nolan JP, Schladweiler MC, Kodavanti UP, Costa DL, Watkinson WP (2002) Cardiac and thermoregulatory effects of instilled particulate matter-associated transition metals in healthy and cardiopulmonary-compromised rats. J Toxicol Environ Health A 65(20):1615–1631

    CAS  Google Scholar 

  • Carter JD, Ghio AJ, Samet JM, Devlin RB (1997) Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol Appl Pharmacol 146(2):180–188

    CAS  Google Scholar 

  • Carty CL, Gehring U, Cyrys J, Bischof W, Heinrich J (2003) Seasonal variability of endotoxin in ambient fine particular matter. J Environ Monit 5(6):953–958

    CAS  Google Scholar 

  • Chen LC, Lippmann M (2009) Effects of metals within ambient air particulate matter (PM) on human health. Inhal Toxicol 21(1):1–31

    Google Scholar 

  • Clarke RW, Coull B, Reinisch U, Catalano P, Killingsworth CR, Koutrakis P, Kavouras I, Krishna Murthy GG, Lawrence J, Lovett E, Wolfson JM, Verrier RL (2000) Inhaled concentrated ambient particles are associated with hematologic and bronchoalveolar lavage changes in canines. Environ Health Perspect 108(12):1179–1187

    CAS  Google Scholar 

  • Clayton CA, Perritt RL, Pellizari ED, Thomas KW, Whitmore RW, Wallace LA (1993) Particle Total Exposure Assessment Methodology (PTEAM) Study: distributions of aerosol and elemental concentrations in personal, indoor, and outdoor air samples in a southern California community. J Expo Ana Environ Epidemiol 3(2):227–250

    CAS  Google Scholar 

  • Connell DP, Winter SE, Conrad VB, Kim M, Crist KC (2006) The Steubenville Comprehensive Air Monitoring Program (SCAMP): concentrations and solubilities of PM(2.5) trace elements and their implications for source apportionment and health research. J Air Waste Manag Assoc 56(12):1750–1766

    CAS  Google Scholar 

  • Costa DL, Dreher KL (1997) Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ Health Perspect 105(Suppl 5):1053–1060

    Google Scholar 

  • Dockery DW, Pope CA (1994) Acute respiratory effects of particulate air pollution. Annu Rev Public Health 15:107–132

    CAS  Google Scholar 

  • Dominici F, Peng RD, Ebisu K, Zeger SL, Samet JM, Bell ML (2007) Does the effect of PM10 on mortality depend on PM nickel and vanadium content? A reanalysis of the NMMAPS data. Environ Health Perspect 115(12):1701–1703

    Google Scholar 

  • Dreher KL, Jaskot RH, Lehmann JR, Richards JH, McGee JK, Ghio AJ, Costa DL (1997) Soluble transition metals mediate residual oil fly ash induced acute lung injury. J Toxicol Environ Health 50(3):285–305

    CAS  Google Scholar 

  • Duvall RM, Norris GA, Dailey LA, Burke JM, McGee JK, Gilmour MI, Gordon T, Devlin RB (2008) Source apportionment of particulate matter in the U.S. and associations with lung inflammatory markers. Inhal Toxicol 20(7):671–683

    CAS  Google Scholar 

  • Dye JA, Adler KB, Richards JH, Dreher KL (1999) Role of soluble metals in oil fly ash-induced airway epithelial injury and cytokine gene expression. Am J Physiol 277(3 Pt 1):L498–L510

    CAS  Google Scholar 

  • Dye JA, Lehmann JR, McGee JK, Winsett DW, Ledbetter AD, Everitt JI, Ghio AJ, Costa DL (2001) Acute pulmonary toxicity of particulate matter filter extracts in rats: coherence with epidemiologic studies in Utah Valley residents. Environ Health Perspect 109(Suppl 3):395–403

    CAS  Google Scholar 

  • Franklin M, Koutrakis P, Schwartz P (2008) The role of particle composition on the association between PM2.5 and mortality. Epidemiology 19(5):680–689

    Google Scholar 

  • Gavett SH, Haykal-Coates N, Copeland LB, Heinrich J, Gilmour MI (2003) Metal composition of ambient PM2.5 influences severity of allergic airways disease in mice. Environ Health Perspect 111(12):1471–1477

    Google Scholar 

  • Gerlofs-Nijland ME, Rummelhard M, Boere AJ, Leseman DL, Duffin R, Schins RP, Borm PJA, Sillanpää M, Salonen RO, Cassee FR (2009) Particle induced toxicity in relation to transition metal and polycyclic aromatic hydrocarbon contents. Environ Sci Technol 43(13):4729–4736

    CAS  Google Scholar 

  • Ghio AJ, Richards JH, Dittrich KL, Samet JM (1998) Metal storage and transport proteins increase after exposure of the rat lung to an air pollution particle. Toxicol Pathol 26(3):388–394

    CAS  Google Scholar 

  • Ghio AJ, Carter JD, Dailey LA, Devlin RB, Samet JM (1999a) Respiratory epithelial cells demonstrate lactoferrin receptors that increase after metal exposure. Am J Physiol 276(6 Pt 1):L933–L940

    CAS  Google Scholar 

  • Ghio AJ, Stonehuerner J, Dailey LA, Carter JD (1999b) Metals associated with both the water-soluble and insoluble fractions of an ambient air pollution particle catalyze an oxidative stress. Inhal Toxicol 11(1):37–49

    CAS  Google Scholar 

  • Ghio AJ, Devlin RB (2001) Inflammatory lung injury after bronchial instillation of air pollution particles. Am J Respir Crit Care Med 164(4):704–708

    CAS  Google Scholar 

  • Ghio AJ (2004) Biological effects of Utah Valley ambient air particles in humans: a review. J Aerosol Med 17(2):157–164

    CAS  Google Scholar 

  • Ghio AJ, Piantadosi CA, Wang X, Dailey LA, Stonehuerner JD, Madden MC, Yang F, Dolan KG, Garrick MD, Garrick LM (2005) Divalent metal transporter-1 decreases metal-related injury in the lung. Am J Physiol Lung Cell Mol Physiol 289(3):L460–L467

    CAS  Google Scholar 

  • Gilmour PS, Nyska A, Schladweiler MC, McGee JK, Wallenborn JG, Richards JH (2006) Cardiovascular and blood coagulative effects of pulmonary zinc exposure. Toxicol Appl Pharmacol 211(1):41–52

    CAS  Google Scholar 

  • Götschi T, Hazenkamp-von Arx ME, Heinrich J, Bono R, Burney P, Forsberg B (2005) Elemental composition and reflectance of ambient fine particles at 21 European locations. Atmos Environ 39(32):5947–5958

    Google Scholar 

  • Graff DW, Cascio WE, Brackhan JA, Devlin RB (2004) Metal particulate matter components affect gene expression and beat frequency of neonatal rat ventricular myocytes. Environ Health Perspect 112(7):792–798

    CAS  Google Scholar 

  • Grahame TJ, Schlesinger RB (2007) Health effects of airborne particulate matter: do we know enough to consider regulating specific particle types or sources? Inhal Toxicol 19:457–481

    CAS  Google Scholar 

  • Gutierrez-Castillo ME, Roubicek DA, Cebrian-Garcia ME, De Vizcaya-Ruiz A, Sordo-Cedeno M, Ostrosky-Wegman P (2006) Effect of chemical composition on the induction of DNA damage by urban airborne particulate matter. Environ Mol Mutagen 47(3):199–211

    CAS  Google Scholar 

  • Gutknecht W, Flanagan J, McWilliams A, Jayanty RK, Kellogg R, Rice J, Duda P, Sarver HS, Le M, Kim S, Kim G, Jo Y (2010) Harmonization of uncertainties of X-ray fluorescence data for PM2.5 air filter analysis. J Air Waste Manag Assoc 60(2):184–194

    CAS  Google Scholar 

  • Hamada K, Goldsmith CA, Suzaki Y, Goldman A, Kobzik L (2002) Airway hyperresponsiveness caused by aerosol exposure to residual oil fly ash leachate in mice. J Toxicol Environ Health A 65(18):1351–1365

    CAS  Google Scholar 

  • Happo MS, Hirvonen MR, Halinen AI, Jalava PI, Pennanen AS, Sillanpää M, Hillarno R, Salonen RO (2008) Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe. Inhal Toxicol 20(14):1215–1231

    CAS  Google Scholar 

  • Hirshon JM, Shardell M, Alles S, Powell JL, Squibb K, Ondov J, Blaisdell DJ (2008) Elevated ambient air zinc increases pediatric asthma morbidity. Environ Health Perspect 116(6):826–831

    CAS  Google Scholar 

  • Hong YC, Hwang SS, Kim JH, Lee KH, Lee HJ, Lee KH, Yu SD, Kim DS (2007) Metals in particulate pollutants affect peak expiratory flow of schoolchildren. Environ Health Perspect 115(3):430–434

    CAS  Google Scholar 

  • Hong YC, Pan XC, Kim SY, Park K, Park EJ, Jin X, Yi SM, Kim YH, Park CH, Song S, Kim H (2010) Asian Dust Storm and pulmonary function of school children in Seoul. Sci Total Environ 408(4):754–759

    CAS  Google Scholar 

  • Huang YC, Ghio AJ, Stonehuerner J, McGee J, Carter JD, Grambow SC, Devlin RB (2003) The role of soluble components in ambient fine particles-induced changes in human lungs and blood. Inhal Toxicol 15(4):327–342

    CAS  Google Scholar 

  • Hyslop NP, White WH (2008) An empirical approach to estimating detection limits using collocated data. Environ Sci Technol 42(14):5235–5240

    CAS  Google Scholar 

  • Hyslop NP, White WH (2009) Estimating precision using duplicate measurements. J Air Waste Manag Assoc 59(9):1032–1039

    Google Scholar 

  • Jalava PI, Hirvonen MR, Sillanpaa M, Pennanen AS, Happo MS, Hillamo R, Cassee FR, Gerlofs-Nijland M, Borm PJA, Schins RPF, Janssen NAH, Salonen RO (2009) Associations of urban air particulate composition with inflammatory and cytotoxic responses in RAW 246.7 cell line. Inhal Toxicol 21(12):994–1006

    CAS  Google Scholar 

  • Jaspers I, Samet JM, Erzurum S, Reed W (2000) Vanadium-induced kappaB-dependent transcription depends upon peroxide-induced activation of the p38 mitogen-activated protein kinase. Am J Respir Cell Mol Biol 23(1):95–102

    CAS  Google Scholar 

  • Kadiiska MB, Mason RP, Dreher KL, Costa DL, Ghio AJ (1997) In vivo evidence of free radical formation in the rat lung after exposure to an emission source air pollution particle. Chem Res Toxicol 10(10):1104–1108

    CAS  Google Scholar 

  • Kennedy T, Ghio AJ, Reed W, Samet J, Zagorski J, Quay J, Carter J, Dailey L, Hoidal JR, Devlin RB (1998) Copper-dependent inflammation and nuclear factor-kappaB activation by particulate air pollution. Am J Respir Cell Mol Biol 19(3):366–378

    CAS  Google Scholar 

  • Kim YM, Reed W, Wu W, Bromberg PA, Graves LM, Samet JM (2006) Zn2+-induced IL-8 expression involves AP-1. JNK. and ERK activities in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 290(5):L1028–L1035

    CAS  Google Scholar 

  • Kinney PL, Chillrud SN, Sax S, Ross JM, Peterson DC, Johnson D (2005) Toxic exposure assessment: a Columbia-Harvard study, The New York City Report. NUATRC Research Report No. 3

    Google Scholar 

  • Kinney PL, Chillrud SN, Sax S, Ross JM, Macintosh D, Myatt TA (2008) Toxic exposure assessment: a Columbia-Harvard study, The Los Angeles Report. NUATRC Research Report No. 9

    Google Scholar 

  • Klein-Patel ME, Diamond G, Boniotto M, Saad S, Ryan LK (2006) Inhibition of beta-defensin gene expression in airway epithelial cells by low doses of residual oil fly ash is mediated by vanadium. Toxicol Sci 92(1):115–125

    CAS  Google Scholar 

  • Kleinman MT (2000) The health effects of air pollution on children. South Coast Air Quality Management District. Available from: http://www.aqmd.gov/forstudents/health_effects_on_children.pdf

  • Kodavanti UP, Hauser R, Christiani DC, Meng ZH, McGee J, Ledbetter A, Richard J, Costa DL (1998) Pulmonary responses to oil fly ash particles in the rat differ by virtue of their specific soluble metals. Toxicol Sci 43(2):204–212

    CAS  Google Scholar 

  • Kodavanti UP, Schladweiler MC, Richards JR, Costa DL (2001) Acute lung injury from intratracheal exposure to fugitive residual oil fly ash and its constituent metals in normo- and spontaneously hypertensive rats. Inhal Toxicol 13(1):37–54

    CAS  Google Scholar 

  • Kodavanti UP, Schladweiler MC, Ledbetter AD, McGee JK, Walsh L, Gilmour PS, Highfill JS, Davies D, Pinkerton KE, Richard JH, Crissman K, Andrews D (2005) Consistent pulmonary and systemic responses from inhalation of fine concentrated ambient particles: roles of rat strains used and physicochemical properties. Environ Health Perspect 113(11):1561–1568

    CAS  Google Scholar 

  • Laden F, Neas LM, Dockery DW, Schwartz J (2000) Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect 108(10):941–947

    CAS  Google Scholar 

  • Lagorio S, Forastiere F, Pistelli R, Iavarone I, Michelozzi P, Fano V, Marconi A, Ziemacki G, Ostro BD (2006) Air pollution and lung function among susceptible adult subjects: a panel study. Environ Health 5(1):11–12

    Google Scholar 

  • Lambert AL, Dong W, Selgrade MK, Gilmour MI (2000) Enhanced allergic sensitization by residual oil fly ash particles is mediated by soluble metal constituents. Toxicol Appl Pharmacol 165(1):84–93

    CAS  Google Scholar 

  • Lay JC, Bennett WD, Ghio AJ, Bromberg PA, Costa DL, Kim CS, Koren HS, Devlin RB (1999) Cellular and biochemical response of the human lung after intrapulmonary instillation of ferric oxide particles. Am J Respir Cell Mol Biol 20(4):631–642

    CAS  Google Scholar 

  • Lewis AB, Taylor MD, Roberts JR, Leonard SS, Shi X, Antonini JM (2003) Role of metal-induced reactive oxygen species generation in lung responses caused by residual oil fly ash. J Biosci 28(1):13–18

    CAS  Google Scholar 

  • Lipfert FW, Baty JD, Miller JP, Wyzga RE (2006) PM2.5 constituents and related air quality variables as predictors of survival in a cohort of U.S. military veterans. Inhal Toxicol 18(9):645–657

    CAS  Google Scholar 

  • Lippmann M, Chen LC, Gordon T, Ito K, Thurston GD (2013) National Particle Component Toxicity (NPACT) Initiative: Integrated Epidemiologic and Toxicologic Studies of the Health Effects of Particulate Matter Components. Research Report 177. Health Effects Institute, Boston, MA

    Google Scholar 

  • Lippmann M, Ito K, Hwang JS, Maciejczyk P, Chen LC (2006) Cardiovascular effects of nickel in ambient air. Environ Health Perspect 114(11):1662–1669

    CAS  Google Scholar 

  • Miller MD, Marty MA, Arcus A, Brown J, Morry D, Sandy M (2002) Differences between children and adults: implications for risk assessment at California EPA. Int J Toxicol 21(5):403–418

    CAS  Google Scholar 

  • Molinelli AR, Madden MC, McGee JK, Stonehuerner JG, Ghio AJ (2002) Effect of metal removal on the toxicity of airborne particulate matter from the Utah Valley. Inhal Toxicol 14(10):1069–1086

    CAS  Google Scholar 

  • Muggenburg BA, Benson JM, Barr EB, Kubatko J, Tilley LP (2003) Short-term inhalation of particulate transition metals has little effect on the electrocardiograms of dogs having preexisting cardiac abnormalities. Inhal Toxicol 15(4):357–371

    CAS  Google Scholar 

  • Nadadur SS, Kodavanti UP (2002) Altered gene expression profiles of rat lung in response to an emission particulate and its metal constituents. J Toxicol Environ Health A 65(18):1333–1350

    CAS  Google Scholar 

  • Nadadur SS, Haykal-Coates N, Mudipalli A, Costa DL (2009) Endothelial effects of emission source particles: acute toxic response gene expression profiles. Toxicol In Vitro 23(1):67–77

    CAS  Google Scholar 

  • Okeson CD, Riley MR, Riley-Saxton E (2004) In vitro alveolar cytotoxicity of soluble components of airborne particulate matter: effects of serum on toxicity of transition metals. Toxicol In Vitro 18(5):673–680

    CAS  Google Scholar 

  • Ostro B, Feng WY, Broadwin R, Green S, Lipsett M (2007) The effects of components of fine particulate air pollution on mortality in California: results from CALFINE. Environ Health Perspect 115(1):13–19

    CAS  Google Scholar 

  • Ostro BD, Feng WY, Broadwin R, Malig BJ, Green RS, Lipsett MJ (2008) The impact of components of fine particulate matter on cardiovascular mortality in susceptible subpopulations. Occup Environ Med 65(11):750–756

    CAS  Google Scholar 

  • Ostro B, Roth L, Malig B, Marty M (2009) The effects of fine particle components on respiratory hospital admissions in children. Environ Health Perspect 117(3):475–480

    CAS  Google Scholar 

  • Ozkaynak H, Xue J, Spengler J, Wallace L, Pellizzari E, Jenkins P (1996) Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California. J Expo Anal Environ Epidemiol 6(1):57–78

    CAS  Google Scholar 

  • Patel MM, Hoepner L, Garfinkel R, Chillrud S, Reyes A, Quinn JW, Perera F, Miller RL (2009) Ambient metals, elemental carbon, and wheeze and cough in New York City children through 24 months of age. Am J Respir Crit Care Med 180(11):1107–1113

    CAS  Google Scholar 

  • Pellizzari ED, Clayton CA, Rodes CE, Mason RP, Piper LL, Fort B, Pfeifer G, Lynam D (1999) Particulate matter and manganese exposures in Toronto, Canada. Atm Environ 33(5):721–734

    CAS  Google Scholar 

  • Pope CA III (1989) Respiratory disease associated with community air pollution and a steel mill, Utah Valley. Am J Public Health 79(5):623–628

    Google Scholar 

  • Pope CA III (1991) Respiratory hospital admissions associated with PM pollution in Utah, Salt Lake and Cache Valleys. Arch Environ Health 46(2):90–97

    Google Scholar 

  • Pope CA III (1992) Daily mortality and PM10 pollution in Utah Valley. Arch Environ Health 47(3):211–217

    Google Scholar 

  • Prieditis H, Adamson IY (2002) Comparative pulmonary toxicity of various soluble metals found in urban particulate dusts. Exp Lung Res 28(7):563–576

    CAS  Google Scholar 

  • Prophete C, Maciejczyk P, Salnikow K, Gould T, Larson T, Koenig J, Jaques P, Sioutas C, Lippmann M, Cohen M (2006) Effects of select PM-associated metals on alveolar macrophage phosphorylated ERK1 and -2 and iNOS expression during ongoing alteration in iron homeostasis. J Toxicol Environ Health A 69(10):935–951

    CAS  Google Scholar 

  • Reff A, Bhave PV, Simon H, Pace TG, Pouliot GA, Mobley JD, Houyoux M (2009) Emissions inventory of PM2.5 trace elements across the United States. Environ Sci Technol 43(15):5790–5796

    CAS  Google Scholar 

  • Riley MR, Boesewetter DE, Kim AM, Sirvent FP (2003) Effects of metals Cu, Fe, Ni, V, and Zn on rat lung epithelial cell. Toxicology 190(3):171–184

    CAS  Google Scholar 

  • Rohr AC, Wyzga RE (2012) Attributing health effects to individual particulate matter constituents. Atmos Environ 62:130–152

    CAS  Google Scholar 

  • Roberts JR, Taylor MD, Castranova V, Clarke RW, Antonini JM (2004) Soluble metals associated with residual oil fly ash increase morbidity and lung injury after bacterial infection in rats. J Toxicol Environ Health A 67(3):251–263

    CAS  Google Scholar 

  • Roemer W, Hoek G, Brunekreef B, Clench-Aas J, Forsberg B, Pekkanen J, Schutz A (2000) PM10 elemental composition and acute respiratory health effects in European children (PEACE project). Pollution Effects on Asthmatic Children in Europe. Eur Respir J 15(3):553–559

    CAS  Google Scholar 

  • Saldiva PH, Clarke RW, Coull BA, Stearns RC, Lawrence J, Murthy GG (2002) Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am J Respir Crit Care Med 165(12):1610–1617

    Google Scholar 

  • Salnikow K, Li X, Lippmann M (2004) Effect of nickel and iron co-exposure on human lung cells. Toxicol Appl Pharmacol 196(2):258–265

    CAS  Google Scholar 

  • Schaumann F, Borm PJ, Herbrich A, Knoch J, Pitz M, Schins RP, Luettig B, Hohlfeld JM, Heinrich J, Krug N (2004) Metal-rich ambient particles (particulate matter 2.5) cause airway inflammation in healthy subjects. Am J Respir Crit Care Med 170(8):898–903

    Google Scholar 

  • Schins RP, Polat D, Begerow J, Turfeld M, Becker A, Borm PJ (2004a) Platinum levels in nasal lavage fluid as a biomarker for traffic-related exposure and inflammation in children. Sci Total Environ 334–335:447–455

    Google Scholar 

  • Schins RP, Lightbody JH, Borm PJ, Shi T, Donaldson K, Stone V (2004b) Inflammatory effects of coarse and fine particulate matter in relation to chemical and biological constituents. Toxicol Appl Pharmacol 195(1):1–11

    CAS  Google Scholar 

  • Schlesinger RB (2007) The health impact of common inorganic components of fine particulate matter (PM2.5) in ambient air: a critical review 1. Inhal Toxicol 19(10):811–832

    CAS  Google Scholar 

  • Schwartz J, Morris R (1995) Air pollution and hospital admissions for cardiovascular disease in Detroit, MI. Am J Epidemiol 142(1):23–35

    CAS  Google Scholar 

  • Schwartz J (2004) Air pollution and children’s health. Pediatrics 113(4 Suppl):1037–1043

    Google Scholar 

  • Slezakova K, Pereira MC, Alvim-Ferraz MC (2009) Influence of tobacco smoke on the elemental composition of indoor particles of different sizes. Atmos Environ 43(3):486–493

    CAS  Google Scholar 

  • Smith KR, Veranth JM, Hu AA, Lighty JS, Aust AE (2000) Interleukin-8 levels in human lung epithelial cells are increased in response to coal fly ash and vary with the bioavailability of iron as a function of particle size and source of coal. Chem Res Toxicol 13(2):118–125

    CAS  Google Scholar 

  • Sorensen M, Schins RP, Hertel O, Loft S (2005) Transition metals in personal samples of PM2.5 and oxidative stress in human volunteers. Cancer Epidemiol Biomarkers Prev 14(5):1340–1343

    CAS  Google Scholar 

  • Suh HH, Zanobetti A, Schwartz J, Coull BA (2011) Chemical properties of air pollutants and cause-specific hospital admissions among the elderly in Atlanta, Georgia. Environ Health Perspect 119:1421–1428

    Google Scholar 

  • Thomas KW, Pellizari ED, Clayton CA, Whitaker DA, Shores RC, Spengler J (1993) Particle Total Exposure Assessment Methodology (PTEAM) 1990 study: method performance and data quality for personal, indoor, and outdoor monitoring. J Expo Anal Environ Epidemiol 3(2):203–226

    CAS  Google Scholar 

  • Turpin BJ, Weisel CP, Morandi M, Colome S, Stock T, Eisenreich S, Buckley B (2007) Relationship of indoor, outdoor, and personal air (RIOPA): part II, Analyses of concentrations of particulate matter species. NUATRC Research report No. 10

    Google Scholar 

  • United States Environmental Protection Agency (2010) Technology transfer network ambient monitoring technology information center – PM2.5 – Visibility (IMPROVE). Available from: http://www.epa.gov/ttnamti1/visdata.html

  • United States Environmental Protection Agency (2010) Technology transfer network ambient monitoring technology information center – chemical speciation. Available from: http://www.epa.gov/ttn/amtic/speciepg.html

  • Urch B, Brook JR, Wasserstein D, Brook RD, Rajagopalan S, Corey P, Silverman F (2004) Relative contributions of PM2.5 chemical constituents to acute arterial vasoconstriction in humans. Inhal Toxicol 16(6–7):345–352

    CAS  Google Scholar 

  • Vedal S, Campen MJ, McDonald JD, Kaufman JD, Larson TV, Sampson PD, Sheppard CD, Szpiro AA (2013) National Particle Component Toxicity (NPACT) Initiative Report on Cardiovascular Effects. Research Report 178. Health Effects Institute, Boston, MA

    Google Scholar 

  • Wallace L, Wang F, Howard-Reed C, Persily A (2008) Contribution of gas and electric stoves to residential ultrafine particle concentrations between 2 and 64 nm: size distributions and emission and coagulation remission and coagulation rates. Environ Sci Technol 42(23):8641–8647

    CAS  Google Scholar 

  • Wallace L, Williams R (2005) Use of personal-indoor-outdoor sulfur concentrations to estimate the infiltration factor and outdoor exposure factor for individual homes and persons. Environ Sci Technol 39(6):1707–1714

    CAS  Google Scholar 

  • Wallace LA (2000) Correlations of personal exposure to particles with outdoor air measurements: a review of recent studies. Aerosol Sci Tech 32(1):15–25

    CAS  Google Scholar 

  • Wallenborn JG, McGee JK, Schladweiler MC, Ledbetter AD, Kodavanti UP (2007) Systemic translocation of particulate matter-associated metals following a single intratracheal instillation in rats. Toxicol Sci 98(1):231–239

    CAS  Google Scholar 

  • Wallenborn JG, Evansky P, Shannahan JH, Vallanat B, Ledbetter AD, Schladweiler MC, Richards JH, Gottipolu RR, Nyska A, Kadavanti UP (2008) Subchronic inhalation of zinc sulfate induces cardiac changes in healthy rats. Toxicol Appl Pharmacol 232(1):69–77

    CAS  Google Scholar 

  • Wang YZ, Ingram JL, Walters DM, Rice AB, Santos JH, Van Houten B, Bonner JC (2003) Vanadium-induced STAT-1 activation in lung myofibroblasts requires H2O2 and P38 MAP kinase. Free Radic Biol Med 35(8):845–855

    CAS  Google Scholar 

  • Wellenius GA, Coull BA, Godleski JJ, Koutrakis P, Okabe K, Savage ST, Lawrence JE, Krishna Murthy GG, Verrier RL (2003) Inhalation of concentrated ambient air particles exacerbates myocardial ischemia in conscious dogs. Environ Health Perspect 111(4):402–408

    CAS  Google Scholar 

  • Wu W, Wang X, Zhang W, Reed W, Samet JM, Whang YE, Ghio AJ (2003) Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells. J Biol Chem 278(30):28258–28263

    CAS  Google Scholar 

  • Zelikoff JT, Schermerhorn KR, Fang K, Cohen MD, Schlesinger RB (2002) A role for associated transition metals in the immunotoxicity of inhaled ambient particulate matter. Environ Health Perspect 110(Suppl 5):871–875

    CAS  Google Scholar 

  • Zhou YM, Zhong CY, Kennedy IM, Pinkerton KE (2003) Pulmonary responses of acute exposure to ultrafine iron particles in healthy adult rats. Environ Toxicol 18(4):227–235

    CAS  Google Scholar 

  • Zhou H, Kobzik L (2007) Effect of concentrated ambient particles on macrophage phagocytosis and killing of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 36(4):460–465

    CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Glynis Lough (Battelle), Dr. Debra Kaden (ENVIRON), Dr. Adriana Oller (NiPERA), and members of the Mickey Leland National Urban Air Toxics Research Center (NUATRC) Scientific Advisory Panel for their comprehensive review of this manuscript.

Declaration of Interest 

The authors’ affiliations are shown on the cover page. The authors have sole responsibility for the writing and content of the paper. This literature review was supported by a contract from the Mickey Leland National Urban Air Toxics Research Center (NUATRC), and partial funding for this project was provided by the Nickel Producers Environmental Research Association (NiPERA). The views expressed and conclusions drawn are those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah L. Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gray, D.L., Wallace, L.A., Brinkman, M.C., Buehler, S.S., La Londe, C. (2015). Respiratory and Cardiovascular Effects of Metals in Ambient Particulate Matter: A Critical Review. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-10638-0_3

Download citation

Publish with us

Policies and ethics