Skip to main content

Mineral Nutrient Depletion Affects Plant Development and Crop Yield

  • Chapter
  • First Online:

Part of the book series: Plant Ecophysiology ((KLEC,volume 10))

Abstract

Optimal plant development depends on the availability of light, water, favourable temperatures and mineral nutrients. Insufficient availability of plant mineral nutrients leads to growth impairments and yield depressions. In natural environments as well as in agricultural systems, mineral nutrient availability is changing in space and time over the growth season of a plant. Therefore, plants have developed adaptation strategies to cope with nutrient deficiencies. Fully understanding these mechanisms at the molecular level is a necessity for breeding nutrient use efficient crops. Plant systems biology approaches contribute to this endeavour as agriculture and plant breeding face-increasing challenges to achieve sustainable and effective agricultural production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amtmann A, Armengaud P (2009) Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr Opin Plant Biol 12:275–283

    CAS  PubMed  Google Scholar 

  • Amtmann A, Blatt MR (2009) Regulation of macronutrient transport. New Phytol 181:35–52

    CAS  PubMed  Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136:2556–2576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Astolfi S, Zuchi S, Hubberten H-M, Pinton R, Hoefgen R (2010) Supply of sulphur to S-deficient young barley seedlings restores their capability to cope with iron shortage. J Exp Bot 61:799–806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Batten GD, Wardlaw IF (1987) Senescence and grain development in wheat plants grown with contrasting phosphorus regimes. Austr J Plant Phys 14:253–265

    Google Scholar 

  • Batten GD, Wardlaw IF, Aston MJ (1986) Growth and the distribution of phosphorus in wheat developed under various phosphorus and temperature regimes. Austr J Agric Res 37:459–469

    Google Scholar 

  • Bogard M, Jourdan M, Allard V, Martre P, Perretant MR, Ravel C, Heumez E, Orford S, Snape J, Griffiths S, Gaju O, Foulkes J, Le Gouis J (2011) Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. J Exp Bot 62:3621–3636

    CAS  PubMed  Google Scholar 

  • Bouguyon E, Gojon A, Nacry P (2012) Nitrate sensing and signaling in plants. Sem Cell Dev Biol 23:648–654

    CAS  Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D, Zhang CJ, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchanan B, Gruissem W, Jones RL (2007) Biochemistry & molecular biology of plants. New York

    Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence – a genomics approach. Plant Biotechnol J 1:3–22

    CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    CAS  PubMed  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cassin G, Mari S, Curie C, Briat JF, Czernic P (2009) Increased sensitivity to iron deficiency in Arabidopsis thaliana overaccumulating nicotianamine. J Exp Bot 60:1249–1259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chapin LJ, Jones ML (2009) Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPT1) during petunia corolla senescence. J Exp Bot 60:2179–2190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davidian JC, Kopriva S (2010) Regulation of sulfate uptake and assimilation – the same or not the same? Mol Plant 3:314–325

    CAS  PubMed  Google Scholar 

  • De Groot CC, Van Den Boogaard R, Marcelis LF, Harbinson J, Lambers H (2003) Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. J Exp Bot 54:1957–1967

    PubMed  Google Scholar 

  • Doerner P (2008) Phosphate starvation signaling: a threesome controls systemic P(i) homeostasis. Curr Opin Plant Biol 11:536–540

    CAS  PubMed  Google Scholar 

  • Dolferus R, Ji X, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181:331–341

    CAS  PubMed  Google Scholar 

  • Drew MC, Saker LR (1975) Nutrient supply and the growth of the seminal root system of barley. II. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J Exp Bot 26:79–90

    CAS  Google Scholar 

  • Dyson T (1999) World food trends and prospects to 2025. Proc Natl Acad Sci U S A 96:5929–5936

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624

    CAS  PubMed  Google Scholar 

  • Galili G, Hoefgen R (2002) Metabolic engineering of amino acids and storage proteins in plants. Metab Eng 4:3–11

    CAS  PubMed  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid S, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–541

    CAS  PubMed  Google Scholar 

  • Gojon A, Nacry P, Davidian JC (2009) Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12:328–338

    CAS  PubMed  Google Scholar 

  • Gong YH, Zhang J, Gao JF, Lu JY, Wang JR (2005) Slow export of photoassimilate from stay-green leaves during late grain-filling stage in hybrid winter wheat (Triticum aestivum L.). J Agron Crop Sci 191:292–299

    CAS  Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol 10:37–49

    CAS  PubMed  Google Scholar 

  • Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82:603–622

    CAS  PubMed  Google Scholar 

  • Gruber BD, Giehl RF, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo Y, Gan S (2012) Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ 35:644–655

    CAS  PubMed  Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    CAS  Google Scholar 

  • Haensch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    CAS  Google Scholar 

  • Hawkesford MJ (2000) Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. J Exp Bot 51:131–138

    CAS  PubMed  Google Scholar 

  • Hawkesford MJ (2003) Transporter gene families in plants: the sulphate transporter gene family – redundancy or specialization? Physiol Plant 117:155–163

    CAS  Google Scholar 

  • Hawkesford MJ (2012) Sulfate uptake and assimilation – whole plant regulation. In: De Kok LJ, Tausz M, Hawkesford MJ, Hoefgen R, McManus MT, Norton RM, Rennenberg H, Saito K, Schnug E, Tabe L (eds) Sulfur metabolism in plants: mechanisms and application to food security, and responses to climate change. Dordrecht Heidelberg London New York, pp 11–24

    Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Bio 19:125–140

    CAS  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158:1317–1323

    CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    CAS  PubMed  Google Scholar 

  • Hoefgen R, Hesse H (2008) Sulfur and cysteine metabolism. In: Jez J (ed) Sulfur: a missing link between soils, crops and nutrition, vol 50. American Society of Agronomy, Madison, pp 83–104

    Google Scholar 

  • Hoefgen R, Hesse H, Galili G (2004) Amino acid metabolism. In: Christou P, Klee H, (eds) Plants – quantitative and qualitative features. Handbook of plant biotechnology. New Jersey pp 577–608

    Google Scholar 

  • Hörtensteiner S (2012) Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol 82:505–517

    PubMed  Google Scholar 

  • Hubberten H-M, Hesse H, Hoefgen R et al (2009) Lateral root growth in sulfur enriched patches. In: Sirko A, De Kok LJ, Haneklaus S, Hawkesford MJ, Rennenberg H, Saito K, Schnug E, Stulen I (eds) Sulfur metabolism in plants: regulatory aspects, significance of sulfur in the food chain, agriculture and the environment. Backhuys Publishers/Margraf Publishers, Leiden/Weikersheim, pp 105–108

    Google Scholar 

  • Hubberten H-M, Drozd A, Tran BV, Hesse H, Hoefgen R (2012a) Local and systemic regulation of sulfur homeostasis in roots of Arabidopsis thaliana. Plant J 72:625–635

    CAS  PubMed  Google Scholar 

  • Hubberten H-M, Klie S, Caldana C, Degenkolbe T, Willmitzer L, Hoefgen R (2012b) An additional role of O-acetylserine as a sulphur status independent regulator during plant growth. Plant J 70:666–677

    CAS  PubMed  Google Scholar 

  • Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148:142–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Izumi M, Wada S, Makino A, Ishida H (2010) The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiol 154:1196–1209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Philos Trans R Soc London, Ser B 365:2835–2851

    PubMed Central  PubMed  Google Scholar 

  • Jordan DR, Hunt CH, Cruickshank AW, Borrell AK, Henzell RG (2012) The relationship between the stay-green trait and grain yield in elite Sorghum hybrids grown in a range of environments. Crop Sci 52:1153–1161

    Google Scholar 

  • Kato Y, Sakamoto W (2010) New insights into the types and function of proteases in plastids. Int Rev Cell Mol Biol 280:185–218

    CAS  PubMed  Google Scholar 

  • Kertesz MA (1999) Riding the sulfur cycle – metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 24:135–175

    Google Scholar 

  • Kertesz MA, Mirleau P (2004) The role of soil microbes in plant sulphur nutrition. J Exp Bot 55:1939–1945

    CAS  PubMed  Google Scholar 

  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150:257–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    CAS  PubMed  Google Scholar 

  • Lauer MJ, Blevins DG, Sierzputowska-Gracz H (1989) 31P-Nuclear magnetic resonance determination of phosphate compartmentation in leaves of reproductive soybeans (Glycine max L.) as affected by phosphate nutrition. Plant Physiol 89:1331–1336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lers A, Sonego L, Green PJ, Burd S (2006) Suppression of LX ribonuclease in tomato results in a delay of leaf senescence and abscission. Plant Physiol 142:710–721

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Chen Z, Hu M, Wang Z, Hua H, Yin C, Zeng H (2011) Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling. Plant Cell Rep 30:1641–1659

    CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    CAS  PubMed  Google Scholar 

  • Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:241–248

    PubMed  Google Scholar 

  • Lopez-Bucio J, Acevedo-Hernandez G, Ramirez-Chavez E, Molina-Torres J, Herrera-Estrella L (2006) Novel signals for plant development. Curr Opin Plant Biol 9:523–529

    CAS  PubMed  Google Scholar 

  • Lu C, Hawkesford MJ, Barraclough PB, Poulton PR, Wilson ID, Barker GL, Edwards KJ (2005) Markedly different gene expression in wheat grown with organic or inorganic fertilizer. Proc Royal Soc London – Series B: Biol Sci 272:1901–1908

    CAS  Google Scholar 

  • Lynch J, White JW (1992) Shoot nitrogen dynamics in tropical common bean. Crop Sci 32:392–397

    CAS  Google Scholar 

  • Marschner P (2012) In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Martinez DE, Costa ML, Gomez FM, Otegui MS, Guiamet JJ (2008) ‘Senescence-associated vacuoles’ are involved in the degradation of chloroplast proteins in tobacco leaves. Plant J 56:196–206

    CAS  PubMed  Google Scholar 

  • Masclaux-Daubresse C, Chardon F (2011) Exploring nitrogen remobilization for seed filling using natural variation in Arabidopsis thaliana. J Exp Bot 62:2131–2142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masclaux-Daubresse C, Carrayol E, Valadier MH (2005) The two nitrogen mobilisation- and senescence-associated GS1 and GDH genes are controlled by C and N metabolites. Planta 221:580–588

    CAS  PubMed  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157

    PubMed Central  PubMed  Google Scholar 

  • McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10:1011–1025

    CAS  PubMed  Google Scholar 

  • Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Bläsing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible W-R (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112

    CAS  PubMed  Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257

    CAS  PubMed  Google Scholar 

  • Naruoka Y, Sherman JD, Lanning SP, Blake NK, Martin JM, Talbert LE (2012) Genetic analysis of green leaf duration in spring wheat. Crop Sci 52:99–109

    Google Scholar 

  • Navabpour S, Morris K, Allen R, Harrison E, A-H-Mackerness S, Buchanan-Wollaston V (2003) Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54:2285–2292

    CAS  PubMed  Google Scholar 

  • Nikiforova VJ, Gakière B, Kempa S, Adamik M, Willmitzer L, Hesse H, Hoefgen R (2004) Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. J Exp Bot 55:1861–1870

    CAS  PubMed  Google Scholar 

  • Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005) Systems re-balancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138:304–318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parrott DL, Martin JM, Fischer AM (2010) Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels. New Phytol 187:313–331

    CAS  PubMed  Google Scholar 

  • Pieters AJ, Paul MJ, Lawlor DW (2001) Low sink demand limits photosynthesis under P(i) deficiency. J Exp Bot 52:1083–1091

    CAS  PubMed  Google Scholar 

  • Rao M, Fredeen AL, Terry N (1990) Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet. III. Diurnal changes in carbon partitioning and carbon export. Plant Physiol 92:29–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richards RA (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot 51:447–458

    CAS  PubMed  Google Scholar 

  • Robson PRH, Donnison IS, Wang K, Frame B, Pegg SE, Thomas A, Thomas H (2004) Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotechnol J 2:101–112

    CAS  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    CAS  PubMed  Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmalenberger A, Hodge S, Hawkesford MJ, Kertesz MA (2009) Sulfonate desulfurization in Rhodococcus from wheat rhizosphere communities. FEMS Microbial Ecol 67:140–150

    CAS  Google Scholar 

  • Semenov MZ, Halford NG (2009) Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. J Exp Bot 60:2791–2804

    CAS  PubMed  Google Scholar 

  • Shinmachi F, Buchner P, Stroud JL, Parmar S, Zhao FJ, McGrath SP, Hawkesford MJ (2010) Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiol 153:327–336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinfurth D, Zörb C, Braukmann F, Mühling KH (2012) Time-dependent distribution of sulphur, sulphate and glutathione in wheat tissues and grain as affected by three sulphur fertilization levels and late S fertilization. Plant Physiol 169:72–77

    CAS  Google Scholar 

  • Stitt M (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ 14:741–762

    CAS  Google Scholar 

  • Stitt M, Müller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible W-R, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53:959–970

    CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    CAS  PubMed  Google Scholar 

  • Terashima I, Evans JR (1988) Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant Cell Phys 29:143–155

    CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    CAS  PubMed  Google Scholar 

  • Thimm O, Blaesing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    CAS  PubMed  Google Scholar 

  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197:696–711

    PubMed  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    CAS  PubMed  Google Scholar 

  • Tschoep H, Gibon Y, Carillo P, Armengaud P, Szecowka M, Nunes-Nesi A, Fernie AR, Koehl K, Stitt M (2009) Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant Cell Environ 32:300–318

    CAS  PubMed  Google Scholar 

  • Von Liebig J (1840) Die organische Chemie in ihrer Anwendung auf Agrikultur und Physiologie. Vieweg, Braunschweig

    Google Scholar 

  • von Schaewen A, Stitt M, Schmidt R, Sonnewald U, Willmitzer L (1990) Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J 9:3033–3044

    Google Scholar 

  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149:885–893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walch-Liu P, Ivanov I, Filleur S, Gan Y, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot 97:875–881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe M, Hubberten H-M, Saito K, Hoefgen R (2010) General regulatory patterns of plant mineral nutrient depletion as revealed by serat quadruple mutants disturbed in cysteine synthesis. Mol Plant 3:438–466

    CAS  PubMed  Google Scholar 

  • Watanabe M, Hubberten H.-M, Hoefgen R (2012) Plant response to mineral ion availability: transcriptome responses to sulfate, selenium and iron. In: De Kok LJ, Tausz M, Hawkesford MJ, Hoefgen R, McManus MT, Norton RM, Rennenberg H, Saito K, Schnug E, Tabe, L (eds) Sulfur metabolism in plants: mechanisms and application to food security, and responses to climate change. Dordrecht Heidelberg London New York, pp 123–134

    Google Scholar 

  • Watanabe M, Balazadeh S, Tohge T, Erban A, Giavalisco P, Kopka J, Mueller-Roeber B, Fernie AR, Hoefgen R (2013) Comprehensive dissection of spatio-temporal metabolic shifts in primary, secondary and lipid metabolism during developmental senescence in Arabidopsis thaliana. Plant Physiol 162:1290–1310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu XY, Kuai BK, Jia JZ, Jing HC (2012) Regulation of leaf senescence and crop genetic improvement. J Integr Plant Biol 54:936–952

    CAS  PubMed  Google Scholar 

  • Wulff-Zottele C, Gatzke N, Kopka J, Orellana A, Hoefgen R, Fisahn J, Hesse H (2010) Photosynthesis and metabolism interact during acclimation of Arabidopsis thaliana to high irradiance and sulphur depletion. Plant Cell Environ 33:1974–1988

    CAS  PubMed  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–118

    CAS  PubMed  Google Scholar 

  • Yamada K, Matsushima R, Nishimura M, Hara-Nishimura I (2001) A slow maturation of a cysteine protease with a granulin domain in the vacuoles of senescing Arabidopsis leaves. Plant Physiol 127:1626–1634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan JQ, He CX, Wang J, Mao ZH, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a “Stay-Green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014

    CAS  PubMed  Google Scholar 

  • Yoshimoto N, Saito K (2012) Molecular and cellular regulation of sulfate transport and assimilation. In: De Kok LJ, Tausz M, Hawkesford MJ, Hoefgen R, McManus MT, Norton RM, Rennenberg H, Saito K, Schnug E, Tabe L (eds) Sulfur metabolism in plants: mechanisms and application to food security, and responses to climate change. Dordrecht Heidelberg London New York, pp 25–33

    Google Scholar 

  • Zientara-Rytter K, Lukomska J, Moniuszko G, Gwozdecki R, Surowiecki P, Lewandowska M, Liszewska F, Wawrzynska A, Sirko A (2011) Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors. Autophagy 7:1145–1158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zörb C, Steinfurth D, Gödde D, Niehaus V, Möhling KH (2012) Metabolite profiling of wheat flag leaf and grains during grain filling phase as affected by sulfur fertilisation. Funct Plant Biol 39:156–166

    Google Scholar 

  • Zuchi S, Cesco S, Varanini Z, Pinton R, Astolfi S (2009) Sulfur deprivation limits Fe-deficiency responses in tomato plants. Planta 230:85–94

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Hoefgen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Whitcomb, S.J., Heyneke, E., Aarabi, F., Watanabe, M., Hoefgen, R. (2014). Mineral Nutrient Depletion Affects Plant Development and Crop Yield. In: Hawkesford, M., Kopriva, S., De Kok, L. (eds) Nutrient Use Efficiency in Plants. Plant Ecophysiology, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-10635-9_8

Download citation

Publish with us

Policies and ethics