Skip to main content

Efficient Mineral Nutrition: Genetic Improvement of Phosphate Uptake and Use Efficiency in Crops

  • Chapter
  • First Online:
Nutrient Use Efficiency in Plants

Part of the book series: Plant Ecophysiology ((KLEC,volume 10))

Abstract

Phosphorus (P) is an essential macronutrient for plants, the lack of which can be a major constraint for agricultural productivity. Economic, political and environmental factors have prioritized the need for research on P acquisition efficiency (PAE), P utilization efficiency (PUE) and P fertiliser uptake efficiency in crops. P has critical functions in plants and complex interactions in soils. Appropriate screening approaches and implications of improvement in crop production are discussed. P acquisition is mediated by members of phosphate transporter families and the roles of these phosphate transporters as well as enzymes involved in P partitioning and re-translocation are complex. There is also a critical importance of regulatory genes including transcription factors, signalling pathways and apparently other P-responsive genes with unknown function. Furthermore, morphological and biochemical responses enhance P solubility in the soil and facilitate uptake and include root plasticity, secretion processes and symbioses. Exploitation of genetic variation, classical breeding and biotechnological gene modification of target genes are future routes for crop improvement. There is a need for selection not just for uptake but also focussing on P storage pools within cells and tissues, and additionally a consideration of crop P requirements during the different growth stages of crops. The review concludes with a summary giving an outlook to future questions related to crop PAE/PUE improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu A (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

    CAS  PubMed  Google Scholar 

  • Akhtar MS, Oki Y, Adachi T (2008) Genetic variability in phosphorus acquisition and utilization efficiency from sparingly soluble P-sources by brassica cultivars under P-stress environment. J Agron Crop Sci 194:380–392

    CAS  Google Scholar 

  • Alexova R, Millar AH (2013) Proteomics of phosphate use and deprivation in plants. Proteomics 13:609–623

    CAS  PubMed  Google Scholar 

  • Andersson MX, Stridh MH, Larsson KE, Liljenberg C, Sandelius AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537:128–132

    CAS  PubMed  Google Scholar 

  • Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bahl GS, Singh NT (1986) Phosphorus diffusion in soils in relation to some edaphic factors and its influence on P uptake by maize and wheat. J Agric Sci 107:335–341

    CAS  Google Scholar 

  • Barber SA (1984) Phosphorus. In: Soil nutrient bioavailability – a mechanistic approach. Wiley, New York, pp 201–228

    Google Scholar 

  • Bari R, Pant BD, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19:529–538

    CAS  Google Scholar 

  • Bates TR, Lynch JP (2001) Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236:243–250

    CAS  Google Scholar 

  • Batten GD, Khan MA (1987) Uptake and utilization of phosphorus and nitrogen by bread wheats grown under natural rainfall. Aust J Exp Agr 27:405–410

    Google Scholar 

  • Batten GD (1992) A review of phosphorus efficiency in wheat. Plant Soil 146:163–168

    CAS  Google Scholar 

  • Bayle V, Arrighi JF, Creff A, Nespoulous C, Vialaret J, Rossignol M, Gonzalez E, Paz-Ares J, Nussaume L (2011) Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell 23:1523–1535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bieleski RL (1968) Effect of phosphorus deficiency on levels of phosphorus compounds in Spirodela. Plant Physiol 43:1309–1316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:225–252

    CAS  Google Scholar 

  • Bollons HM, Barraclough PB (1997) Inorganic orthophosphate for diagnosing the phosphorus status of wheat plants. J Plant Nutr 20:641–655

    CAS  Google Scholar 

  • Bollons HM, Barraclough PB (1999) Assessing the phosphorus status of winter wheat crops: inorganic orthophosphate in whole shoots. J Agric Sci 133:285–295

    Google Scholar 

  • Brady SM, Song S, Dhugga KS, Rafalski JA, Benfey PN (2007) Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol 143:172–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bucher M, Rausch C, Daram P (2001) Molecular and biochemical mechanisms of phosphate uptake into plants. J Plant Nutr Soil Sci 164:209–221

    CAS  Google Scholar 

  • Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Pérez- Pérez J, Solano R, Leyva A, Paz-Ares J (2010) Central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet 6:e1001102

    PubMed Central  PubMed  Google Scholar 

  • Byrne SL, Foito A, Hedley PE, Morris JA, Stewart D, Barth S (2011) Early response mechanisms of perennial ryegrass (Lolium perenne) to phosphorus deficiency. Ann Bot 107:243–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calderón-Vázquez C, Ilbarra-Laclette E, Caballero-Perez J, Herrera-Estrella L (2008) Transcript profiling of Zea mays roots reveals responses to phosphate deficiency and the plant-species-specific level. J Exp Bot 59:2479–2497

    PubMed  Google Scholar 

  • Calderón-Vázquez C, Sawers RJH, Herrera-Estrella L (2011) Phosphate deprivation in maize: genetics and genomics. Plant Physiol 156:1067–1077

    PubMed Central  PubMed  Google Scholar 

  • Chen ZH, Nimmo GA, Jenkins GI, Nimmo HG (2007) BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochem J 405:191–198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH (2009a) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21:3554–3566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen JY, Xu L, Cai YL, Xu J (2009b) Identification of QTLs for phosphorus utilization in maize (Zea mays L.) across P levels. Euphytica 167:245–252

    CAS  Google Scholar 

  • Chen J, Liu Y, Ni J, Wang Y, Bai Y, Shi J, Gan J, Wu Z, Wu P (2011) Osphf1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice. Plant Physiol 157:269–278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng L, Bucciarelli B, Liu J, Zinn K, Miller S, Patton-Vogt J, Allan D, Shen J, Vance CP (2011) White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. Plant Physiol 156:1131–1148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chevalier F, Rossignol M (2011) Proteomic analysis of Arabidopsis thaliana ecotypes with contrasted root architecture in response to phosphate deficiency. J Plant Physiol 168:1185–1890

    Google Scholar 

  • Chin JH, Lu X, Haefele SM, Gamuyao R, Ismail A, Wissuwa M, Heuer S (2010) Development and application of gene-based markers for the major rice QTL Phosphorus uptake 1. Theor Appl Genet 120:1073–1086

    CAS  PubMed  Google Scholar 

  • Chiou TJ, Lin S (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    CAS  PubMed  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Sua CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chitwood DH, Timmermans MCP (2007) Target mimics modulate miRNAs. Nat Genet 39:935–936

    CAS  PubMed  Google Scholar 

  • Cordell D, Drangert J, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 12:292–305

    Google Scholar 

  • Da Silva AE, Gabelman WH (1992) Screening maize inbred lines for tolerance to low-P stress conditions. Plant Soil 146:181–187

    Google Scholar 

  • Daram P, Brunner S, Persson BL, Amrhein N, Bucher M (1998) Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 206:225–233

    CAS  PubMed  Google Scholar 

  • Daram P, Brunner S, Rausch C, Steiner C, Amrheim N (1999) Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11:2153–2166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies TGE, Ying J, Li ZS, Li J, Gordon-Weeks R (2002) Expression of analysis of putative high-affinity transporters in Chinese winter wheats. Plant Cell Environ 25:1325–1339

    CAS  Google Scholar 

  • De Sousa SM, Clark RT, Mendes FF, de Oliveira AC, de Vasconcelos MJV, Parentoni SN, Kochian LV, Guimarães CT, Magalhães JV (2012) A role for root morphology and related candidate genes in P acquisition efficiency in maize. Funct Plant Biol 39:925–935

    Google Scholar 

  • Delhaize E, Randall PJ (1995) Characterization of a phosphate-accumulator mutant of Arabidopsis-thaliana. Plant Physiol 107:207–213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delhaize E, Hebb DM, Ryan PR (2001) Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol 125:2059–2067

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delhaize E, Taylor P, Hocking PJ, Simpson RJ, Ryan PR, Richardson AE (2009) Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotech J 7:391–400

    CAS  Google Scholar 

  • Devaiah BN, Karthikeyan AS, Raghothama KG (2007a) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Devaiah BN, Nagarajan VK, Raghothama KG (2007b) Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol 145:147–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dinkelacker B, Römheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupine. Plant Cell Environ 12:285–292

    Google Scholar 

  • Ding G, Yang M, Hu Y, Liao Y, Shi L, Xu F, Meng J (2010) Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. Ann Bot 105:1221–1234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F (2012) Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot 109:747–759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doerner P (2008) Phosphate starvation signaling: a threesome controls systemic Pi homeostasis. Curr Opin Plant Biol 11:536–540

    CAS  PubMed  Google Scholar 

  • Duan K, Yi K, Dang L, Huang H, Wu W, Wu P (2008) Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. Plant J 54:965–975

    CAS  PubMed  Google Scholar 

  • Duff SMG, Moorhead GBG, Lefebre DD, Plaxton WC (1989) Phosphate starvation inducible ‘bypasses’ of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol 90:1275–1278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egle K, Manske G, Römer W, Vlek PLG (1999) Improved phosphorus efficiency of three new wheat genotypes from CIMMYT in comparison with an older Mexican variety. J Plant Nutr Soil Sci 162:353–358

    CAS  Google Scholar 

  • Essigmann B, Güler S, Narang RA, Linke D, Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 95:1950–1955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finck A (1991) Düngermenge nach Pflanzenanalyse. In: Baumeister W (ed) Düngung. Ulmer, Stuttgart, pp 96–101

    Google Scholar 

  • Fitter AH (2006) What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 172:3–6

    CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of The United Nations: current world fertilizer trends and outlook to 2015. Rome 2011

    Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga IM, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    CAS  PubMed  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    CAS  PubMed  Google Scholar 

  • Furihata T, Suzuki M, Sakurai H (1992) Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts. Plant Cell Physiol 33:1151–1157

    CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (1998) Direct evidence on participation of root hairs in phosphorus (32P) uptake from soil. Plant Soil 198:147–152

    CAS  Google Scholar 

  • Gahoonia TS, Care D, Nielsen NE (1996) Variation in acquisition of soil phosphorus among wheat and barley genotypes. Plant Soil 178:223–230

    CAS  Google Scholar 

  • Gahoonia TS, Care D, Nielsen NE (1997) Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant Soil 1991:181–188

    Google Scholar 

  • Gahoonia TS, Nielsen NE, Lyshede OB (1999) Phosphorus (P) acquisition of cereal cultivars in the field at three levels of P fertilization. Plant Soil 211:269–281

    CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE, Joshi PA, Jahoor A (2001) A root hairless barley mutant for elucidation genetic of root hairs and phosphorus uptake. Plant Soil 235:211–219

    CAS  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539

    CAS  PubMed  Google Scholar 

  • Gao N, Su Y, Mi J, Shen W, Shi W (2010) Transgenic tomato overexpressing ath-miR399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporters. Plant Soil 334:123–136

    CAS  Google Scholar 

  • Gaude N, Tippmann H, Flemetakis E, Katinakis P, Udvardi M, Dörmann P (2004) The galactolipid digalactosyldiacylglycerol accumulates in the peribacteroid membrane of nitrogen-fixing nodules of soybean and lotus. J Biol Chem 279:34624–34630

    CAS  PubMed  Google Scholar 

  • Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–528

    CAS  PubMed  Google Scholar 

  • Gaxiola RA, Edwards M, Elser JJ (2001) A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture. Chemosphere 84:840–845

    Google Scholar 

  • George TS, Richardson AE (2008) Potential and limitations to improving crops for enhanced phosphorus utilization. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions, vol 7. Springer, Dordrecht, pp 247–270

    Google Scholar 

  • George TS, Richardson AE, Hadobas PA, Simpson RJ (2004) Characterization of transgenic Trifolium subterraneum L. which expresses phyA and releases extracellular phytase: growth and P nutrition in laboratory media and soil. Plant Cell Environ 27:1351–1361

    CAS  Google Scholar 

  • George TS, Simpson RJ, Hadobas PA, Richardson AE (2005) Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soils. Plant Biotechnol J 3:129–140

    CAS  PubMed  Google Scholar 

  • George TS, Gregory PJ, Hocking P, Richardson AE (2008) Variation on root-associated phosphatase activities in wheat contributes to the utilization of organic P substrates in vitro, but does not explain differences in the P-nutrition of plants when grown in soils. Environ Exp Bot 64:2239–2249

    Google Scholar 

  • Gerke J, Römer W, Jungk A (1994) The excretion of citric and malic-acid by proteoid roots of lupinus-albus l – effects on soil solution concentrations of phosphate, iron, and aluminum in the proteoid rhizosphere in samples of an oxisol and a luvisol. Z Pflanz Bodenkunde 157:289–294

    CAS  Google Scholar 

  • Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake in roots. Planta 222:688–698

    CAS  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    CAS  PubMed  Google Scholar 

  • González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) Phosphate transporter traffic facilitator1 is a plant-specific sec12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512

    PubMed Central  PubMed  Google Scholar 

  • Gregory PJ, George TS (2011) Feeding nine billion: the challenge to sustainable crop production. J Exp Bot 62:5233–5239

    CAS  PubMed  Google Scholar 

  • Gregory AL, Hurley BA, Tran HT, Valentine AJ, She YM, Knowles VL, Plaxton WC (2009) In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved Arabidopsis thaliana. Biochem J 420:57–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gu M, Xu K, Chen A, Zhu Y, Tang G, Xu G (2010) Expression analysis suggests potential roles of micro RNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiol Plant 138:226–237

    CAS  PubMed  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Cakmak I (2006) Genotypic variation in phosphorus efficiency between wheat cultivars grown under greenhouse and field conditions. Soil Sci Plant Nutr 52:470–478

    CAS  Google Scholar 

  • Guo B, Jin Y, Wussler C, Blancaflor EB, Moter CM, Versaw WK (2008) Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol 177:889–898

    CAS  PubMed  Google Scholar 

  • Guo W, Zhao J, Li X, Qin L, Yan X, Hong Liao H (2011) A soybean b-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66:541–552

    CAS  PubMed  Google Scholar 

  • Guo C, Zhao X, Liu X, Zhang L, Gu J, Li X, Lu W, Xiao K (2013) Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. Planta 237:1163–1178

    CAS  PubMed  Google Scholar 

  • Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci U S A 102:8066–8070

    PubMed Central  PubMed  Google Scholar 

  • Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular mycorrhiza–specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20:2989–3005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamburger D, Rezzonico E, Petetot JM, Somerville C, Poirier Y (2002) Identification and characterization of the Arabidopsispho1 gene involved in phosphate loading to the xylem. Plant Cell 14:889–920

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59:93–109

    CAS  PubMed  Google Scholar 

  • Hammond JP, Bennet MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn CR, Swarup R, Woolaway KE, White PJ (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132:578–596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot 94:323–332

    CAS  PubMed  Google Scholar 

  • Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968

    CAS  PubMed  Google Scholar 

  • Hammond JP, Broadley MR, Bowen HC, Spracklen WP, Hayden RM, White PJ (2011) Gene expression changes in phosphorus deficient potato (Solanum tuberosum L.) leaves and the potential for diagnostic gene expression markers. PLoS One 6:e24606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayes JE, Zhu YG, Mimura T, Reid RJ (2004) An assessment of the usefulness of solution culture in screening for phosphorus efficiency in wheat. Plant Soil 261:91–97

    CAS  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    CAS  PubMed  Google Scholar 

  • Hensel LL, Grbic V, Baumgarten DA, Bleecker AB (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5:553–564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    CAS  Google Scholar 

  • Hochholdinger F, Zimmermann R (2008) Conserved and diverse mechanisms in root development. Curr Opin Plant Biol 11:70–74

    CAS  PubMed  Google Scholar 

  • Hochholdinger F, Wen TJ, Zimmermann R, Chimot-Marolle P, Silva ODE, Bruce W, Lamkey KR, Wienand U, Schnable PS (2008) The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot specific, COBRA-like protein that significantly affects grain yield. Plant J 54:888–898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holford ICR (1997) Soil phosphorus: its measurement, and its uptake by plants. Aust J Soil Res 35:227–239

    CAS  Google Scholar 

  • Hong JJ, Park YS, Bravo A, Bhattarai KK, Daniels DA, Harrison MJ (2012) Diversity of morphology and function in arbuscular mycorrhizal symbioses in Brachypodium distachyon. Planta 236:851–865

    CAS  PubMed  Google Scholar 

  • Hou XL, Wu P, Jiao FC, Jia QJ, Chen HM, Yu J, Song XW, Yi KK (2005) Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and local Pi signalling and hormones. Plant Cell Environ 28:353–364

    CAS  Google Scholar 

  • Hsieh LC, Lin SI, Shih ACC, Chen JW, Lin WY, Tseng CY, Li WH, Chi TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132

    PubMed Central  PubMed  Google Scholar 

  • Huang CY, Roessner U, Eickmeier I, Gene Y, Callahan DL, Sirley N, Langridge P, Bacie A (2008) Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant Cell Physiol 49:691–703

    CAS  PubMed  Google Scholar 

  • Huang CY, Shirley N, Genc Y, Shi B, Langridg P (2011) Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley. Plant Physiol 156:1217–1229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hürlimann HC, Pinson B, Stadler-Waibel M, Zeeman SC, Freimoser FM (2009) The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity. EMBO Rep 10:1003–1008

    PubMed Central  PubMed  Google Scholar 

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570

    CAS  PubMed  Google Scholar 

  • Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    CAS  Google Scholar 

  • Jones GPD, Jessop RS, Blair GJ (1992) Alternative methods for the selection of phosphorus efficiency in wheat. Field Crops Res 30:29–40

    Google Scholar 

  • Johnson JF, Vance CP, Allan DL (1996) Phosphorus deficiency in Lupinus albus. Plant Physiol 112:31–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jungk A (2001) Root hairs and the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci 164:121–129

    CAS  Google Scholar 

  • Kanda H, Kasukabe Y, Fujita H, Washino T, Tachibana S (1994) Effect of low root temperature on ribonucleic-acid concentrations in figleaf gourd and cucumber roots differing in tolerance to chilling temperature. J Jpn Soc Hortic Sci 63:611–618

    CAS  Google Scholar 

  • Karthikeyan AS, Varadarajan DK, Jain A, Held MA, Carpita NC, Raghothama KG (2007) Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225:907–918

    CAS  PubMed  Google Scholar 

  • Kirkby EA, Johnston AEJ (2008) Soil and fertilizer phosphorus in relation to crop nutrition. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions, vol 7. Springer Science+Business Media B.V., Dordrecht, pp 177–223

    Google Scholar 

  • Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511–517

    CAS  Google Scholar 

  • Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D (2000) Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol 41:1030–1037

    CAS  PubMed  Google Scholar 

  • Lan P, Li W, Schmidt W (2012) Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. Mol Cell Proteomics 11:1156–1166

    PubMed Central  PubMed  Google Scholar 

  • Lauer MJ, Blevins DG, Sierzputowska-Gracz H (1989) 31P-nuclear magnetic resonance determination of phosphate compartmentation in leaves of reproductive soybeans (Glycine max L.) as affected by phosphate nutrition. Plant Physiol 89:1331–1336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lei M, Liu Y, Zhang B, Zhao Y, Wang X, Zhou Y, Raghothama KG, Liu D (2011) Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis. Plant Physiol 156:1116–1130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li K, Xu C, Li Z, Zhang K, Yang A, Zhang J (2008a) Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Plant J 55:927–939

    CAS  PubMed  Google Scholar 

  • Li Y, Tong Y, Bin L, Zhao H, Zhang X, Li Z (2008b) Expression of TaIPS genes in wheat seedlings with nitrogen and phosphorous starvation. Acta Bot Boreal Occident Sin 27:1303–1307

    Google Scholar 

  • Li L, Liu C, Lian X (2010) Gene expression profiles in rice roots under low phosphorus stress. Plant Mol Biol 72:423–432

    CAS  PubMed  Google Scholar 

  • Liang Q, Cheng X, Mei M, Yan X, Liao H (2010) QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot 106:223–234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liao M, Hocking PJ, Dong B, Delhaize E, Richardson AE, Ryan PR (2008) Variation in early phosphorus-uptake efficiency among wheat genotypes grown on two contrasting Australian soils. Aust J Agric Res 59:157–166

    CAS  Google Scholar 

  • Lin WY, Lin SI, Chiou TJ (2009) Molecular regulators of phosphate homeostasis in plants. J Exp Bot 60:1427–1438

    CAS  PubMed  Google Scholar 

  • Liu C, Muchal US, Uthappa M, Kononowicz AK, Raghotama KG (1998) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol 116:91–99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu F, Wang Z, Ren H, Shen C, Li Y, Ling HQ, Wu C, Lian X, Wu P (2010) OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J 62:508–517

    CAS  PubMed  Google Scholar 

  • Liu F, Chang X-J, Ye Y, Xie W-B, Wu P, Lian X-M (2011) Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice. Mol Plant 4:1105–1122

    CAS  PubMed  Google Scholar 

  • Liu TY, Huang TK, Tseng CY, Lai YS, Lin SI, Lin WY, Chen JW, Chiou T (2012) PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell 24:2168–2183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lloyd JC, Zakhleniuk OV (2004) Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. J Exp Bot 55:1221–1230

    CAS  PubMed  Google Scholar 

  • López-Bucio J, de la Vega OM, Guevara-García A, Herrera-Estrella L (2000) Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat Biotechnol 18:450–453

    PubMed  Google Scholar 

  • Lott JNA, Bojarski M, Kolasa J, Batten GD, Campbell LC (2009) A review of the phosphorus content of dry cereal and legume crops of the word. Int J Agric Resour Govern Ecol 8:351–370

    Google Scholar 

  • Lundmark M, Kørner CJ, Nielsen TH (2010) Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays. Physiol Plant 140:57–68

    CAS  PubMed  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch J, Brown KM (2001) Topsoil foraging – an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237

    CAS  Google Scholar 

  • Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56

    CAS  Google Scholar 

  • MacDonald GK, Bennet EM, Potter PA, Ramakutty N (2011) Agronomic phosphorus imbalances across the word’s croplands. Proc Natl Acad Sci U S A 108:3086–3091

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manske GGB, Ortiz-Monasterio JI, van Ginkel M, González RM, Fischer RA, Rajaram S, Vlek PLG (2001) Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. Eur J Agron 14:261–274

    CAS  Google Scholar 

  • Marschner P (2012) Phosphorus. In: Marschner P (ed) Marschner’s mineral nutrition of higher plant, 3rd edn. Academic Press/Elsevier Ltd, London

    Google Scholar 

  • McDowell RW (2012) Minimising phosphorus losses from the soil matrix. Curr Opin Biotechnol 23:860–865

    CAS  PubMed  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht, p 849

    Google Scholar 

  • Miao J, Sun J, Liu D, Li B, Zhang A, Li Z (2009) Characterization of the promoter of phosphate transporter TaPHT1.2 differentially expressed in wheat varieties. J Genet Genomics 36:455–466

    CAS  PubMed  Google Scholar 

  • Michael B, Zink F, Lantzsch HJ (1980) Effect of phosphate application of phytin-P and other phosphate fractions in developing wheat grains. Z Planzenernähr Bodenk 143:369–376

    CAS  Google Scholar 

  • Mimura T (2001) Physiological control of phosphate uptake and phosphate homeostasis in plant cells. Aust J Plant Physiol 28:653–658

    CAS  Google Scholar 

  • Mimura T, Sakano K, Shimmen T (1996) Studies on the distribution, re-translocation and homeostasis of inorganic phosphate in barley leaves. Plant Cell Environ 19:311–320

    CAS  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci U S A 102:11934–11939

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D (1997) Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Natl Acad Sci U S A 94:7098–7102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci U S A 102:7760–7765

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miura M, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM (2011) SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiol 155:1000–1012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mollier A, Pellerin S (1999) Maize root system growth and development as influenced by phosphorus deficiency. J Exp Bot 50:487–497

    CAS  Google Scholar 

  • Morcuende R, Bari R, Gibon Y, Zhen W, Pant BD, Bläsing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible W-R (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112

    CAS  PubMed  Google Scholar 

  • Muchhal US, Pardo JM, Raghothama KG (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci U S A 93:10519–10523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muchhal US, Raghothama KG (1999) Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci U S A 96:5868–5872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mudge SR, Rae AL, Diatloff E, Smith FW (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J 31:341–353

    CAS  PubMed  Google Scholar 

  • Müller R, Nilsson L, Krintel C, Nielsen TH (2004) Gene expression during recovery from phosphate starvation in roots and shoots of Arabidopsis thaliana. Physiol Plant 122:233–243

    Google Scholar 

  • Müller R, Nilsson L, Nielsen LK, Nielsen TH (2005) Interaction between phosphate starvation signalling and hexokinase-independent sugar sensing in Arabidopsis leaves. Physiol Plant 124:81–90

    Google Scholar 

  • Nagy R, Vasconcelos MJV, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama KG, Bucher M (2006) Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biol 8:186–197

    CAS  PubMed  Google Scholar 

  • Neumann G, Martinoia E (2002) Cluster roots – an underground adaptation for survival in extreme environments. TRENDS Plant Sci 7:162–167

    CAS  PubMed  Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    CAS  Google Scholar 

  • Nielsen TH, Krapp A, Röper-Schwarz U, Stitt M (1998) The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen. Plant Cell Environ 12:443–454

    Google Scholar 

  • Nilsson L, Müller R, Nielsen TH (2007) Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ 30:1499–1512

    CAS  PubMed  Google Scholar 

  • Nilsson L, Müller R, Nielsen TH (2010) Dissecting the plant trascriptome and the regulatory response to tomato deprivation. Physiol Plant 139:129–143

    CAS  PubMed  Google Scholar 

  • Nilsson L, Lundmark M, Jensen PE, Nielsen TH (2012) The Arabidopsis transcription factor PHR1 is essential for adaptation to high light and retaining functional photosynthesis during phosphate starvation. Physiol Plant 144:35–47

    CAS  PubMed  Google Scholar 

  • Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2012) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112:391–408

    PubMed Central  PubMed  Google Scholar 

  • Oono Y, Kawahara Y, Kanamori H, Mizuno H, Yamagata H, Yamamoto M, Hosokawa S, Ikawa H, Akahane I, Zhu Z, Wu J, Itoh T, Matsumoto T (2011) mRNA-seq reveals a comprehensive transcriptome profile of rice under phosphate stress. Rice 4:50–65

    Google Scholar 

  • Oono Y, Kobayashi F, Kawahara Y, Yazawa T, Handa H, Itoh T, Matsumoto T (2013) Characterisation of the wheat (Triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in Pi-stressed wheat. BMC Genomics 14:77

    CAS  PubMed Central  PubMed  Google Scholar 

  • Osborne LD, Rengel Z (2002) Screening cereals for genotypic variation in efficiency of phosphorus uptake and utilisation. Aust J Agric Res 53:295–303

    Google Scholar 

  • Ozturk L, Eker S, Torun B, Cakmak I (2005) Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil. Plant Soil 269:69–80

    CAS  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 63:1–134

    Google Scholar 

  • Pariasca-Tanaka J, Satoh K, Rose T, Mauleon R, Wissuwa M (2009) Stress response versus stress tolerance: a transcriptome analysis of two rice lines contrasting in tolerance to phosphorus deficiency. Rice 2:167–185

    Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahim TA, Saranga Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat x wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    CAS  PubMed  Google Scholar 

  • Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    PubMed Central  PubMed  Google Scholar 

  • Plaxton W, Tran HT (2011) Metabolic adaptation of phosphate-starved plants. Plant Physiol 156:1006–1015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poirier Y, Thoma S, Somerville C, Schiefelbein J (1991) A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol 97:1087–1093

    CAS  PubMed Central  PubMed  Google Scholar 

  • Preuss C, Huang CY, Gilliham M, Tyerman SD (2010) Channel-like characteristics of the low-affinity barley phosphate transporter Pht1;6 when expressed in xenopus oocytes. Plant Physiol 152:1431–1441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296

    CAS  Google Scholar 

  • Rae AL, Cybinski DH, Jarmey JM, Smith FW (2003) Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Mol Biol 53:27–36

    CAS  PubMed  Google Scholar 

  • Rae AL, Jarmey JM, Mudge SR, Smith FW (2004) Over-expression of a high-affinity transporter in transgenic barley plants does not enhance phosphate uptake rates. Funct Plant Biol 31:141–148

    CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    CAS  PubMed  Google Scholar 

  • Raghothama KG (2005) Phosphorous. In: Broadley MR, White PJ (eds) Plant nutritional genomics. Blackwell Publishing Ltd., Oxford, pp 112–126

    Google Scholar 

  • Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell 13:1683–1697

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37

    CAS  PubMed  Google Scholar 

  • Raven JA (2008) Phosphorus and the future. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 271–283

    Google Scholar 

  • Raven JA (2012) Protein turnover and plant RNA and phosphorus requirements in relation to nitrogen fixation. Plant Sci 188:25–35

    PubMed  Google Scholar 

  • Rebafka FP, Bationo A, Marschner H (1993) Phosphorus seed coating increases phosphorus uptake, early growth and yield of pearl-millet (pennisetum-glaucum (l) r br) grown on an acid sandy soil in niger, west-africa. Fertil Res 35:151–160

    CAS  Google Scholar 

  • Ren F, Guo QQ, Chang LL, Chen L, Zhao CZ, Zhong H, Li XB (2012a) Brassica napus PHR1 gene encoding a myb-like protein functions in response to phosphate starvation. PLoS One 7:e44005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren Y, He X, Liu D, Li J, Zhao X, Li B, Tong Y, Zhang A, Li Z (2012b) Major quantitative trait loci for seminal root morphology of wheat seedlings. Mol Breed 30:139–148

    Google Scholar 

  • Reymond M, Svistoonof FS, Loudet O, Nussaume L, Desnos T (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 29:115–125

    CAS  PubMed  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2000) Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedings grown in sterile culture. Plant Cell Environ 23:397–405

    CAS  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, Gupta VVS, Grace PR (eds) Soil biota: management in sustainable farming systems. CSIRO Australia, Melbourne, pp 50–62

    Google Scholar 

  • Römer R, Schilling G (1986) Phosphorus requirements of the wheat plant in various stages of its life cycle. Plant Soil 91:221–229

    Google Scholar 

  • Rose TJ, Wissuwa M (2012) Rethinking internal phosphorus utilization efficiency: a new approach is needed to improve PUE in grain crops. In: Sparks DL (ed) Advances in agronomy. Elsevier, London, pp 185–218

    Google Scholar 

  • Rose TJ, Rengel Z, Ma Q, Bowden JW (2007) Differential accumulation patterns of phosphorus and potassium by canola cultivars compared to wheat. J Plant Nutr Soil Sci 170:404–411

    CAS  Google Scholar 

  • Rose TJ, Rose MT, Pariasca-Tanaka J, Heuer S, Wissuwa M (2011) The frustration with utilization: why have improvements in internal phosphorus utilization efficiency in crops remained so elusive? Front Plant Sci 2:73. doi:10.3389/fpls.2011.00073

    PubMed Central  PubMed  Google Scholar 

  • Rouached H, Arpat AB, Poirier Y (2010) Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol Plant 3:288–299

    CAS  PubMed  Google Scholar 

  • Rouached H (2011) Multilevel coordination of phosphate and sulfate homeostasis in plants. Plant Signal Behav 6:952–955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev 15:2122–2133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46:174–184

    PubMed  Google Scholar 

  • Sánchez-Calderón L, López-Bucio J, Chacón-López A, Gutiérrez-Ortega A, Hernández-Abreu E, Herrera-Estrella L (2006) Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Pysiol 140:879–889

    Google Scholar 

  • Sattelmacher B, Horst WJ, Becker HC (1994) Factors that contribute to genetic variation for nutrient efficiency of crop plants. Z Pflanzen Bodenk 157:215–224

    CAS  Google Scholar 

  • Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69

    CAS  PubMed  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schünmann PHD, Richardson AE, Smith FW, Delhaize E (2004) Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). J Exp Bot 55:855–865

    PubMed  Google Scholar 

  • Secco D, Baumann A, Poirier Y (2010) Characterization of the rice PHO1 gene family reveals a key role for OSPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons. Plant Physiol 152:1693–1704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, Tyerman SD, Wu P, Shou H, Whelan J (2012) The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytol 193:842–851

    CAS  PubMed  Google Scholar 

  • Shi T, Li R, Zhao Z, Ding G, Long Y, Meng J, Xu F, Shi L (2013) QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus. PLoS One 8:e54559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shin H, Shin HS, Chen R, Harrison MJ (2006) Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J 45:712–726

    CAS  PubMed  Google Scholar 

  • Smith FW, Cybinski DH, Rae AL (1999) Regulation of expression of genes encoding phosphate transporters in barley roots. In: Gissel-Nielsen G, Jensen A (eds) Plant nutrition-molecular biology and genetics. Kluwer Academic Publisher, Dordrecht, pp 145–150

    Google Scholar 

  • Solaiman Z, Marschner P, Wang D, Rengel Z (2007) Growth, P uptake and rhizosphere properties of wheat and canola genotypes in an alkaline soil with low P availability. Biol Fertil Soils 44:143–153

    CAS  Google Scholar 

  • Stangoulis JCR, Huynh BL, Welch RM, Choi EY, Graham RD (2007) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154:289–294

    Google Scholar 

  • Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y (2007) Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J 50:982–994

    CAS  PubMed  Google Scholar 

  • Strong WM, Best EK, Cooper JE (1997) Phosphate fertilizer residues in wheat-growing soils of the western downs. Qld Aust J Soil Res 35:341–354

    Google Scholar 

  • Su J, Xiao Y, Li M, Liu Q, Li B, Tong Y, Jia J, Li Z (2006) Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant Soil 281:25–36

    CAS  Google Scholar 

  • Su J, Zheng Q, Li HW, Li B, Jing RL, Tong YP, Li ZS (2009) Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci 176:824–836

    CAS  Google Scholar 

  • Suzuki Y, Kihara-Doi T, Kawazu T, Miyake C, Makino A (2010) Differences in rubisco content and its synthesis in leaves at different positions in Eucalyptus globulus seedlings. Plant Cell Environ 33:1314–1323

    CAS  PubMed  Google Scholar 

  • Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796

    CAS  PubMed  Google Scholar 

  • Syers JK, Johnston AE, Curtin D (2008) Efficiency of soil and fertilizer phosphorus use – reconciling changing concepts of soil phosphorus behaviour with agronomic information. FAO Fertil Plant Nutr Bull 18:27–44

    Google Scholar 

  • Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere and hydrosphere of a mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395

    CAS  Google Scholar 

  • Teng W, Deng Y, Chen YP, Xu XF, Chen RY, Lv Y, Zhao YY, Zhao XQ, He X, Li B, Tong YP, Zhang FS, Li ZS (2013) Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. J Exp Bot 64:1403–1411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tian J, Wang C, Zhang Q, He X, Whelan J, Shou H (2012) Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice. J Integr Plant Biol 54:631–639

    CAS  PubMed  Google Scholar 

  • Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S (2004) Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant J 37:801–814

    CAS  PubMed  Google Scholar 

  • Tiessen H (2008) Phosphorus in a global environment. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions, vol 7. Springer, Dordrecht, pp 1–7

    Google Scholar 

  • Tittarelli A, Milla L, Vargas F, Morales A, Neupert C, Meisel LA, Salvo-G H, Peñaloza E, Muñoz G, Corcuera LJ, Silva H (2007) Isolation and comparative analysis of the wheat TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots. J Exp Bot 58:2573–2582

    CAS  PubMed  Google Scholar 

  • Uhde-Stone C, Zinn KE, Ramirez-Yanez M, Li A, Vance CP (2003) Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol 131:1064–1079

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ullrich-Eberius CI, Novacky A, Fischer E, Lüttge U (1981) Relationship between energy-dependent phosphate uptake and the electrical membrane potential in Lemna gibba G1. Plant Physiol 67:797–801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci U S A 103:8607–8612

    PubMed Central  PubMed  Google Scholar 

  • Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblizek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappe MS, Webb EA (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72

    PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytol 157:423–447

    CAS  Google Scholar 

  • Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195:306–320

    CAS  PubMed  Google Scholar 

  • Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter PHT2;1 influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751–1766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang YH, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130:1361–1370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Ribot C, Rezzonico E, Poirier Y (2004) Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiol 135:400–411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C, Ying S, Huang H, Li K, Wu P, Shou H (2009a) Involvement of OsSPX1 in phosphate homeostasis in rice. Plant J 57:895–904

    CAS  PubMed  Google Scholar 

  • Wang Z, Hu H, Huang H, Duan K, Wu ZA, Wu P (2009b) Regulation of OsSPX1 and OsSPX3 on expression of OsSPX domain genes and Pi-starvation signaling in rice. J Integr Plant Biol 51:663–674

    CAS  PubMed  Google Scholar 

  • Wang X, Shen J, Liao H (2010a) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179:302–306

    CAS  Google Scholar 

  • Wang L, Chen F, Zhang F, Mi G (2010b) Two strategies for achieving higher yield under phosphorus deficiency in winter wheat grown in field conditions. Field Crops Res 118:36–42

    Google Scholar 

  • Wang J, Sun J, Miao J, Guo J, Shi Z, He M, Chen Y, Zhao X, Li B, Han FP, Tong Y, Li Z (2013) A wheat phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat. Ann Bot. doi:10.1093/aob/mct080

  • Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kishimtot N, Kikuchi S, Yamagishi MY, Osaki M (2003) Transcriptomic analysis of metabolic changes by phosphorus stress in rice roots. Plant Cell Environ 26:1515–1523

    CAS  Google Scholar 

  • White PJ, Veneklaas EJ (2012) Nature and nurture: the importance of seed phosphorus content. Plant Soil 357:1–8

    CAS  Google Scholar 

  • White PJ, Broadley MR, Gregory PJ (2012) Managing the nutrition of plants and people. Appl Environ Soil Sci 2012: Article ID 104826

    Google Scholar 

  • Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wissuwa M, Yano M, Ae N (1998) Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:777–783

    CAS  Google Scholar 

  • Wissuwa M, Ae N (2001) Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant Soil 237:275–286

    CAS  Google Scholar 

  • Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897

    CAS  PubMed  Google Scholar 

  • Wissuwa M, Gamat G, Ismail AM (2005) Is root growth under phosphorus deficiency affected by source or sink limitations? J Exp Bot 56:1943–1950

    CAS  PubMed  Google Scholar 

  • Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321:409–430

    CAS  Google Scholar 

  • Wu P, Wang XM (2008) Role of OsPHR2 on phosphorus homeostasis and root hairs development in rice (Oryza sativa L.). Plant Signal Behav 3:674–675

    PubMed Central  PubMed  Google Scholar 

  • Yang YS, Paszkowski U (2011) Phosphate import at the arbuscule: just a nutrient? MPMI 24:1296–1299

    CAS  PubMed  Google Scholar 

  • Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121:181–193

    CAS  PubMed  Google Scholar 

  • Yang M, Ding G, Shi L, Xu F, Meng J (2011) Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant Soil 339:97–111

    CAS  Google Scholar 

  • Yang SY, Grønlund M, Jakobsen I, Suter-Grotemeyer M, Rentsch D, Miyao A, Hirochika H, Kumar CS, Sundaresan V, Salamin N, Catausan S, Mattes N, Heuer S, Paszkowskia U (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24:4236–4251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao Y, Sun H, Xu F, Zhang X, Liu S (2011) Comparative proteome analysis of metabolic changes by low phosphorus stress in two Brassica napus genotypes. Planta 233:523–537

    CAS  PubMed  Google Scholar 

  • Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Z, Kang B, He X, Lv S, Bai Y, Ding W, Chen M, Cho H, Wu P (2011) Root hair-specific expansins modulate root hair elongation in rice. Plant J 66:725–734

    CAS  Google Scholar 

  • Zakhleniuk OV, Raines CA, Lloyd JC (2001) pho3: a phosphorus-deficient mutant pf Arabidopsis thaliana (L.) Heynh. Planta 212:529–534

    CAS  PubMed  Google Scholar 

  • Zeng HQ, Zhu YY, Huang SQ, Yang ZM (2010) Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). J Plant Physiol 167:1289–1297

    CAS  PubMed  Google Scholar 

  • Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51:51–59

    CAS  PubMed  Google Scholar 

  • Zhang H, Huang Y, Ye X, Shi L, Xu F (2009) Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. Plant Soil 320:91–102

    CAS  Google Scholar 

  • Zhao J, Jamar DCL, Lou P, Wang Y, Wu J, Wang X, Bonnema G, Koornneef M, Vreugdenhil D (2008) Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa. Plant Cell Environ 31:887–900

    CAS  PubMed  Google Scholar 

  • Zhao MR, Han YY, Feng YN, Li F, Wang W (2012) Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Rep 31:671–685

    CAS  PubMed  Google Scholar 

  • Zhao X, Liu X, Guo C, Gu J, Xiao K (2013) Identification and characterization of microRNAs from wheat (Triticum aestivum L.) under phosphorus deprivation. J Plant Biochem Biotechnol 22:113–123

    CAS  Google Scholar 

  • Zhou J, Jiao FC, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu J, Lynch JP (2004) The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings. Funct Plant Biol 31:949–958

    CAS  Google Scholar 

  • Zhu YG, Smith SE (2001) Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi. Plant Soil 231:105–112

    CAS  Google Scholar 

  • Zhu J, Shawn M, Kaepple SM, Lynch JP (2005a) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111:688–695

    CAS  PubMed  Google Scholar 

  • Zhu J, Shawn M, Kaepple SM, Lynch JP (2005b) Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant Soil 270:299–310

    CAS  Google Scholar 

  • Zhu J, Mickelson SM, Kaeppler SM, Lynch JP (2006) Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theor Appl Genet 113:1–10

    CAS  PubMed  Google Scholar 

  • Zhu J, Zhang C, Lynch JP (2010) The utility of phenotypic plasticity of root hair length for phosphorus acquisition. Funct Plant Biol 37:313–322

    Google Scholar 

Download references

Acknowledgements

Work at Rothamsted Research is supported via the 20:20 Wheat® Programme by the UK Biotechnology and Biological Sciences Research Council. The contribution of A. Gruen was supported by which received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 264296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm J. Hawkesford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gruen, A., Broadley, M.R., Buchner, P., Hawkesford, M.J. (2014). Efficient Mineral Nutrition: Genetic Improvement of Phosphate Uptake and Use Efficiency in Crops. In: Hawkesford, M., Kopriva, S., De Kok, L. (eds) Nutrient Use Efficiency in Plants. Plant Ecophysiology, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-10635-9_4

Download citation

Publish with us

Policies and ethics